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Motivation

Pathological synchronization - symptoms of neurological diseases
Desynchronization methods:

I) open loop (e.g. coordinates reset, high frequency stimulation)

II) closed loop (e.g. PID, delayed feedback, act-and-wait)

Our aim is to investigate the possibility to suppress
synchronization in oscillatory networks via an external
time-dependent force without the use of the feedback.
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Oscillatory network

Kuramoto model
0; =w,; + N Zk . sin(fy — 0; ) + A(t) sin(wot — 65)

coupling external force

w, are distributed by Lorentzian External force is product of two periodic functions:
sin(wot)

A(t) = A(t +T)



Synchronization estimation

Kuramoto model
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Synchronization estimation

Kuramoto model
0; =w; + % Zk  sin(fr — 0;) + A(t) sin(wot — 0;)

System synchronization is defined by the order parameter:
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7| =0

desynchronized state

7 =1

synchronized state

Object is to minimize |r| average through A(t) period T

What kind of dynamics govern order parameter?



Synchronization estimation

Ott-Antonsen ansatz' — order parameter in rotating coordinates satisfy equation:

T = —%72 (Kr* + A(t)) + % (Kr+4+ A(t)) —rA

[1] Edward Ott and Thomas M. Antonsen, Chaos, 18:037113, 2008



Synchronization estimation

Ott-Antonsen ansatz' — order parameter in rotating coordinates satisfy equation:

T = —%72 (Kr* + A(t)) + % (Kr+4+ A(t)) —rA

Or in rectangular coordinates 7 = & + 1y

dx 1 1 1
- = _5((x2—y2)(A+Kx +2K:z:y)+5 K —2A8)z + 54,
dy K 2 K

y=0 is stationary independently on A(t).

We need such force that it would stabilize y=0, then x(t) would define order parameter.

[1] Edward Ott and Thomas M. Antonsen, Chaos, 18:037113, 2008



Mathematical problem formulation
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Minimize functional:

With constrains:
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Mathematical problem formulation

Minimize functional:

With constrains:

dx | 1
— = ——z*(A+ K — —
7 57 (A + x)—I—Q(Kx—I—A) TA,
T
0 > / (5[( (1 — 3:1:2) — Ax — A) dt, X(t)=x(t+T) stability
0
e = bili
0 > / <§K(1—x2)—Aaz—A> dt, y=0 stability
0
T
W = / A?(t)dt = const., finite power
0

Solution: undefined Lagrange multipliers + numerical integration.
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Results

9j = Wwj+ x5 Zk | sin(0

Example of external force amplitude
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Results

0; = w; + K577 sin(f), — 6;) + A(t) sin(wot — 6;)

Example of external force amplitude Phase oscillators under control
1 : ‘ . ‘ ‘ :
1| _
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O = 05|
-0.5
o > 4 6 g 10 % 50 100

Stimulation is not effective

For control free system |r|=0 is unstable stationary point.



Non-smooth amplitude

Example of external force amplitude Phase oscillators under control
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0; =w,; + N Zk  sin(fr — 6;) + A(t) sin(wot — 6;)



Conclusions

 Desynchronization with smoothly modulated external
force which frequency is equal to system's frequency is
not effective.

» Efficiency may be increased by non-smooth amplitude
modulation.

 Results may be relevant to systems with bistable order
parameter (where at the same time exist stable

synchronized and incoherent states).
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Thank you for attention!
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