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*Single neuron

*Single population of neurons

— Macroscopic field equations
— Bifurcations

*Two Iinteracting identical populations

— Symmetric solutions
— Non-symmetric solutions

Conclusions



XX
) ..
o s

Quadratic integrate-and-fire neurons

Excitable  Spiking

‘ vV, A % A
Equations: \/

Vi =V} +n V) Vj
V} e V;)eak ‘/j = Vireset
Vpeak == _Vreset — OO VA VA




Equations:

Vi =Vi+m
‘/j e V;)eak ‘/j = Vireset

Vpeak == _Vreset — OO

Theta representation

0; = 2arctan(V})

éj = (1 —cosf;)+ (1 +cosb;)n;

Excitable

VjA
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Neurons interact synaptically

Modeled by Heaviside function

1oy = gYin SNV H(V - Vi)

\ I
\ /
\ /
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V N 7
reset e =

Neuron effects other neurons only, when its potential exceed
threshold value.
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Macroscopic variables

Microscopic model
‘/j :‘/}2_|_77j_|_lsyn
V})eak = _V;“eset — OO

1oy = g% S H(V, — Vig)

Macroscopic variables:

* Mean membrane potential
* Firing rate

Infinite size network limit N — oo enables analytical approach.
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Continuity density function: px(V|n,t)dV number of neurons
between V and V +dV.

Continuity equation
5iPk = —3v [pe (V2 + 0+ 17" ]

Trivial stationary solution:
pr o (V2 4+ I°¥)
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Lorentzian ansatz
E. Montbrio, D. Pazo, A. Roxin , Phys. Rev. X 5, 021028 (2015)

% 9 Tk (n,t)
pe(Vin,t) = - [V—yk(77,12)]2%1%(77,75)2

re(t) = L [M 2 z(n,t)g(n)dn - population firing rate
vi(t) = [ yr(n,t)g(n)dn - average potential

g(n) distribution of parameter 7

U (n, t) n—zr(n,t) + yi(n,t) + I°Y"
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Macroscopic equations

If external currents are distributed according to Lorentz function with

width A and center 7). (Network consists both excitable and spiking
neurons)

R — A/?T—I—Q?“kvk,

e = f+vi-—mory+ IV

Relation with Kuramoto order parameter:

Z = [ [p(VIn,t)g(n)e*dnds W =7r 4+ iv
A
------- b TS ‘
6 §
Q/ <1 U . %4
W = 1-Z"
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If external currents are distributed according to Lorentz function with
width A and center 7]

”l°“k — A/ﬂ'—|—27“k?}k,

Uy = T4+vi—wirs + 15"

(1) (1) (1)

N
(@)

N
o

Coupling strength

(&)

Avefagé pdtenﬁal |
2
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" Spiking rate r
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|dentical populations

Jem

1st 2nd
Network Network
Interactions
‘./370 e ‘/;2,0 T 750 [T JanO T Je:cSl
‘./}71 Y V72,1 o kBT Jznsl i JexSO

Internal external

Sp =2k 30 H(V; ) — Vin)
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|dentical populations
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Internal external

Macroscopic equations:
A/T{' + 2rr v,
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Transverse and longitudinal coordinates:

R = (7“()—7“1)/2, Q — (ro—l—rl)/Z,
P = (vo—1)/2, M = (vo+wv1)/2

Symmetric solutions:  (0,0,Q, M)

Equations for Q and M are identical to eq. of a single population with a
modified coupling strength J=J._+J_ (equilibrium points and limit cycles)

Q = A/n+20M, - Ty = A/m+ 2rgug,

i = 74+ M2 — 12Q° + JViS. Uy = H+vp—mry+ JVeaS
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Transverse and longitudinal coordinates:

R = (7“()—7“1)/2, Q — (TO—l—Tl)/Q,
P = (vo—1)/2, M = (vo+wv1)/2

Symmetric solutions:  (0,0,Q, M)

Equations for Q and M are identical to eq. of a single population with a
modified coupling strength J=J._+J_ (equilibrium points and limit cycles)
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Transverse and longitudinal coordinates:

R = (7“()—7“1)/2, Q — (TO—l—Tl)/Q,
P = (vo—1)/2, M = (vo+wv1)/2

Symmetric solutions:  (0,0,Q, M)

Equations for Q and M are identical to eq. of a single population with a
modified coupling strength J=J._+J_ (equilibrium points and limit cycles)

(41)-4(%)

A(t) = const. stationary points

A(t) = A(t+T) limitcycles




Non-symmetric solutions

Macroscopic equations:

A/?T—I—QTk’ljk, k=0,1
N+ vi — 715 + JinSk + JexS1—k
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Non-symmetric solutions

4 8
©@_ Jel¥
2 o 4 !‘
— 2 E
2 g ——
(f) 1 el® !/
2 |4 ]
. : : _ 0 10 0 P
-8 -6 :}‘ -2 A 6 -4 2 ONH -4 2 0 -6 -4 -2 0
ex u JZE Hear: ] Jea:
Splay state Chimera-like  Chaotic
R N DY R
= 2 _ 2
d o WU , RS
() | (0 I |6
| | i
i /£ I 4
s 1000 E ;/;/’ {i%???:_ E it
0 20 40

t / t



Non-symmetric solutions
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Competition of neural interactions within and between
the populations may lead to a rich variety of
nonsymetrical patterns, including splay state,
antiphase periodic oscillations, chimera like states
and chaotic oscillations as well as bistabilities
between them.

|. Ratas and K. Pyrgas, Symmetry breaking in two interacting populations of quadratic integrate-and-fire
neurons, Phys. Rev. E 96, 042212 (2017).

|. Ratas and K. Pyragas, Macroscopic self-oscillations and aging transition in a network of synaptically
coupled quadratic integrate-and-fire neurons, Phys. Rev. E 94, 032215 (2016).


http://pre.aps.org/
http://pre.aps.org/

ACKNOWLEDGMENT

This work was supported by Grant No. S-MIP-17-55
of the Research Council of Lithuania



	Slide 1
	Slide 2
	Nuotrauka su pavadinimu ir fonu
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

