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Overview



Quadratic integrate-and-fire neurons

Excitable Spiking

Equations: 



Quadratic integrate-and-fire neurons

Excitable Spiking

Theta representation 

Equations: 



Interaction

Neurons interact synaptically 
Modeled by Heaviside function

Neuron effects other neurons only, when its potential exceed 
threshold value.



Macroscopic variables

Microscopic model

Infinite size network limit              enables analytical approach.

Macroscopic variables:
● Mean membrane potential
● Firing rate



Continuity density function:                    number of neurons 
between        and             .

Continuity equation

Continuity equation

Trivial stationary solution:



Continuity equation

Lorentzian ansatz
E. Montbrio, D. Pazo, A. Roxin , Phys. Rev. X 5, 021028 (2015)

- population firing rate

- average potential

distribution of parameter 



Macroscopic equations

If external currents are distributed according to Lorentz function with 
width       and center     . (Network consists both excitable and spiking 
neurons)

Relation with Kuramoto order parameter: 



Macroscopic equations

If external currents are distributed according to Lorentz function with 
width       and center 
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Identical populations



Network

internal external
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Macroscopic equations:

1st 
Network

2nd 
Network

Identical populations



Symmetric solutions

Transverse and longitudinal coordinates:

Symmetric solutions:

Equations for Q and M are identical to eq. of a single population with a 
modified coupling strength J=J
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Symmetric solutions

Transverse and longitudinal coordinates:

Equations for Q and M are identical to eq. of a single population with a 
modified coupling strength J=J
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 (equilibrium points and limit cycles)

stationary points

limit cycles

Symmetric solutions:



Non-symmetric solutions

Macroscopic equations:



Non-symmetric solutions

Splay state Chimera-like Chaotic 



Non-symmetric solutions

Chimera-like state for external excitatory coupling



Conclusions

Competition of neural interactions within and between 
the populations may lead to a rich variety of 
nonsymetrical patterns, including splay state, 
antiphase periodic oscillations, chimera like states 
and chaotic oscillations as well as bistabilities 
between them.
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