

FIZINIŲ IR
TECHNOLOGIJOS MOKSLŲ
CENTRAS

Chimera-like states in two interacting populations of heterogeneous quadratic integrate-and-fire neurons

Irmantas Ratas, Kęstutis Pyragas

Center for Physical Sciences and Technology,
Lithuania

- Single neuron
- Single population of neurons
 - Macroscopic field equations
 - Bifurcations
- Two interacting identical populations
 - Symmetric solutions
 - Non-symmetric solutions
- Conclusions

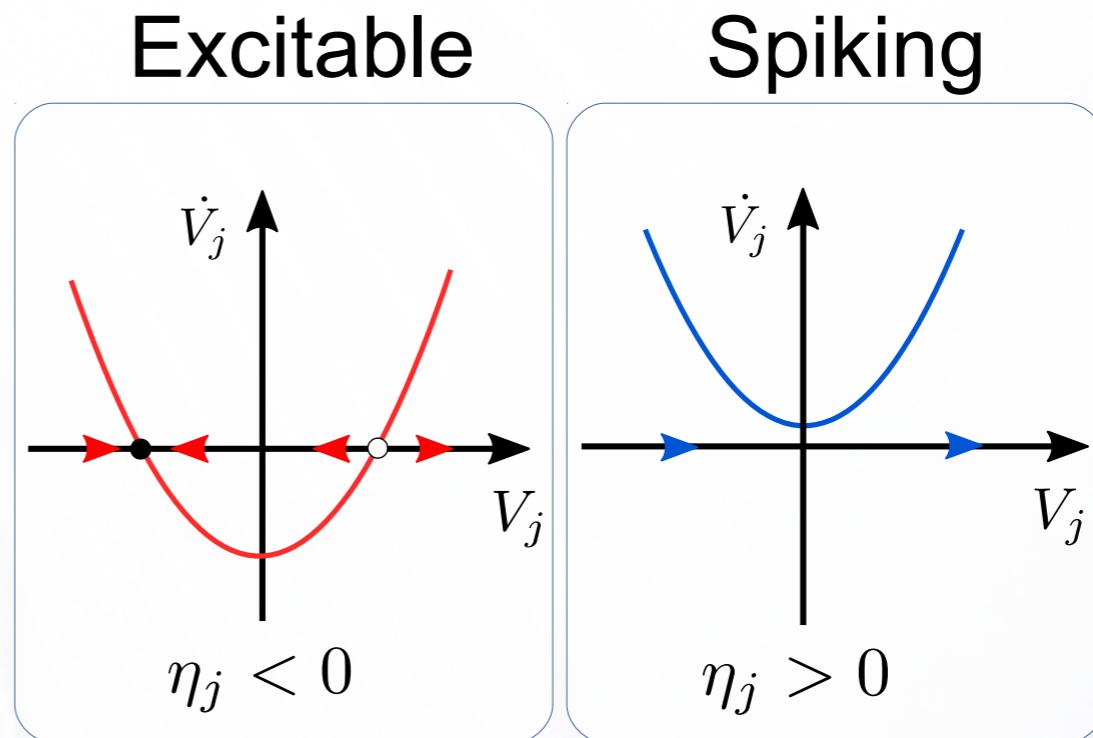
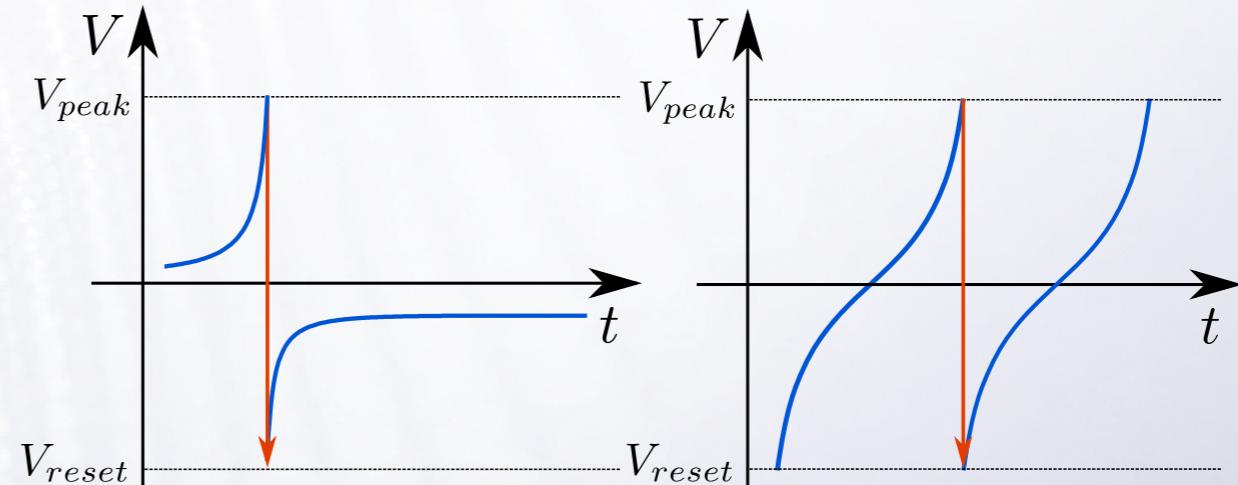
Quadratic integrate-and-fire neurons

Equations:

$$\dot{V}_j = V_j^2 + \eta_j$$

$$V_j \geq V_{peak} \quad V_j = V_{reset}$$

$$V_{peak} = -V_{reset} \rightarrow \infty$$



Quadratic integrate-and-fire neurons

Equations:

$$\dot{V}_j = V_j^2 + \eta_j$$

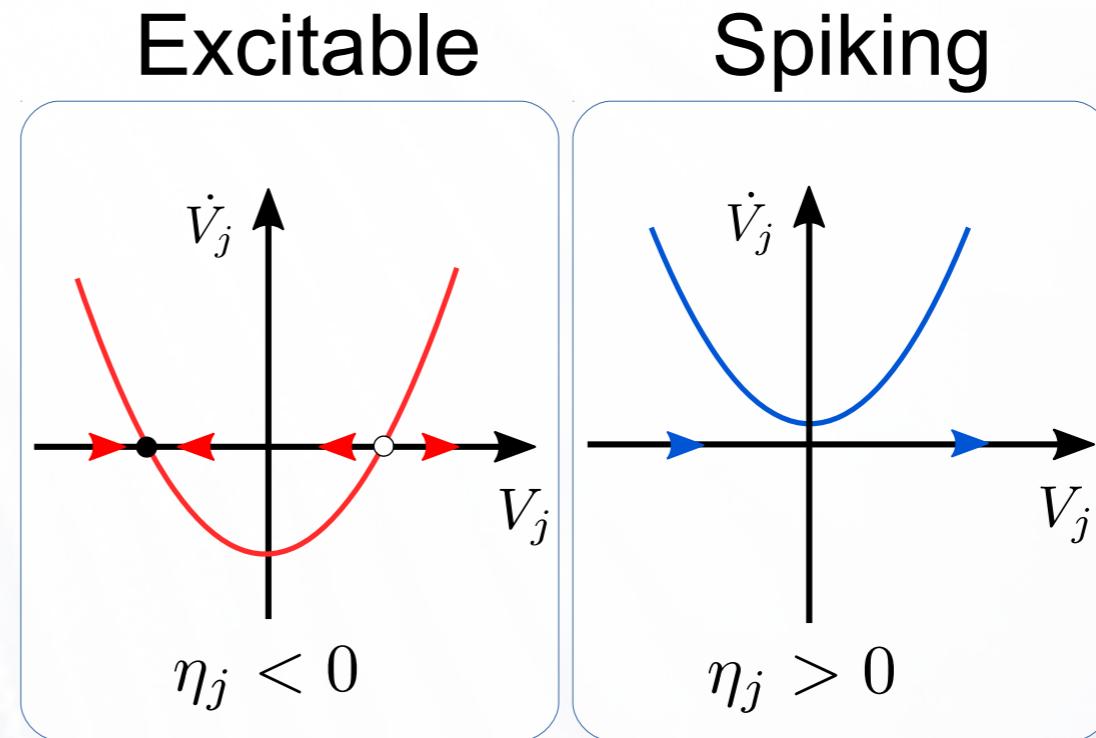
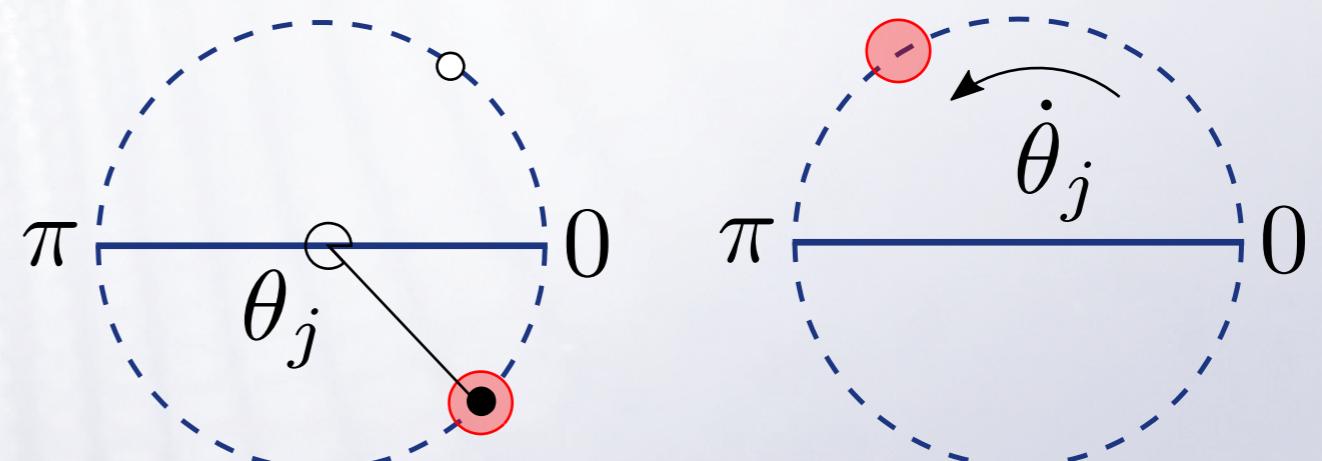
$$V_j \geq V_{peak} \quad V_j = V_{reset}$$

$$V_{peak} = -V_{reset} \rightarrow \infty$$

Theta representation

$$\theta_j = 2 \arctan(V_j)$$

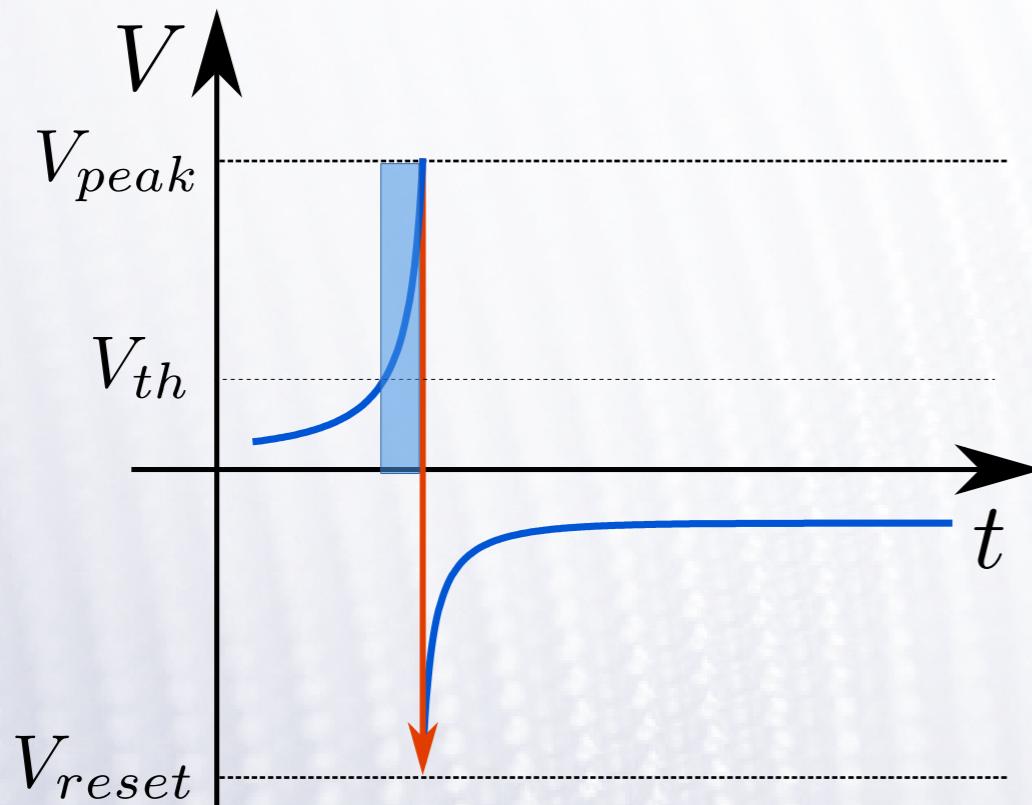
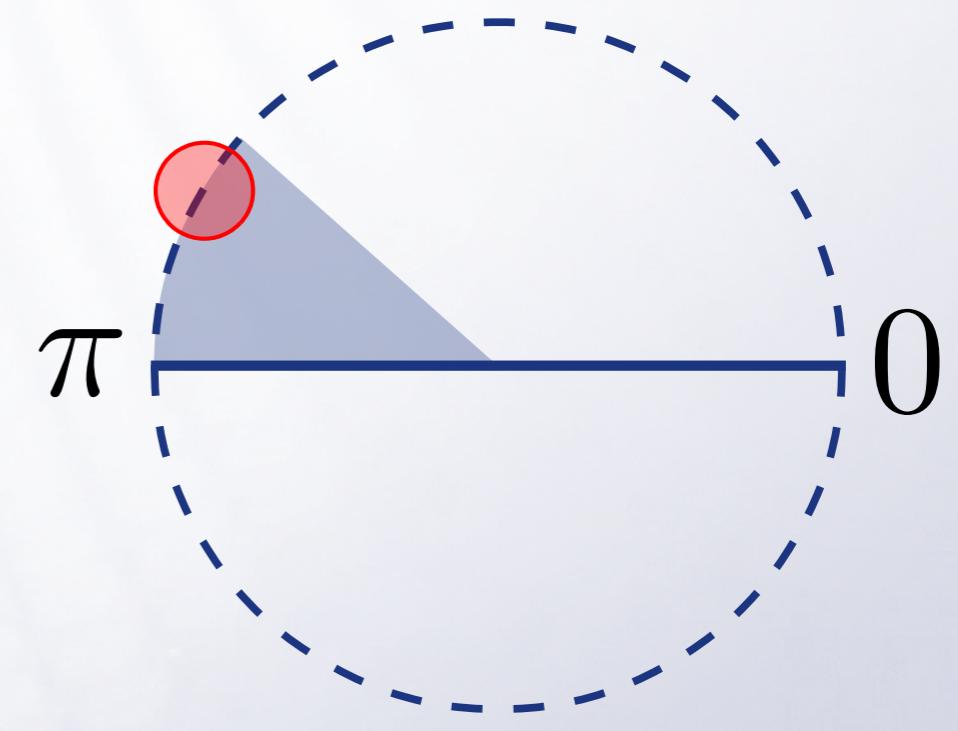
$$\dot{\theta}_j = (1 - \cos \theta_j) + (1 + \cos \theta_j)\eta_j$$



Neurons interact synaptically

Modeled by Heaviside function

$$I^{syn} = J \frac{V_{th}}{N} \sum_{l=1}^N H(V_l - V_{th})$$



Neuron effects other neurons only, when its potential exceed threshold value.

Microscopic model

$$\dot{V}_j = V_j^2 + \eta_j + I^{syn}$$

$$V_{peak} = -V_{reset} \rightarrow \infty$$

$$I^{syn} = J \frac{V_{th}}{N} \sum_{l=1}^N H(V_l - V_{th})$$

Macroscopic variables:

- Mean membrane potential
- Firing rate

Infinite size network limit $N \rightarrow \infty$ enables analytical approach.

Continuity equation

Continuity density function: $\rho_k(V|\eta, t)dV$ number of neurons between V and $V + dV$.

Continuity equation

$$\frac{\partial}{\partial t} \rho_k = -\frac{\partial}{\partial V} [\rho_k \{V^2 + \eta + I^{syn}\}]$$

Trivial stationary solution:

$$\rho_k \propto (V^2 + \eta + I^{syn})^{-1}$$

Continuity equation

Lorentzian ansatz

E. Montbrio, D. Pazo, A. Roxin , Phys. Rev. X 5, 021028 (2015)

$$\rho_k(V|\eta, t) = \frac{1}{\pi} \frac{x_k(\eta, t)}{[V - y_k(\eta, t)]^2 + x_k(\eta, t)^2}$$

$$r_k(t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} x_k(\eta, t) g(\eta) d\eta \quad \text{- population firing rate}$$

$$v_k(t) = \int_{-\infty}^{+\infty} y_k(\eta, t) g(\eta) d\eta \quad \text{- average potential}$$

$g(\eta)$ distribution of parameter η

$$\begin{aligned} \dot{x}_k(\eta, t) &= 2x_k(\eta, t)y_k(\eta, t), \\ \dot{y}_k(\eta, t) &= \eta - x_k^2(\eta, t) + y_k^2(\eta, t) + I^{syn} \end{aligned}$$

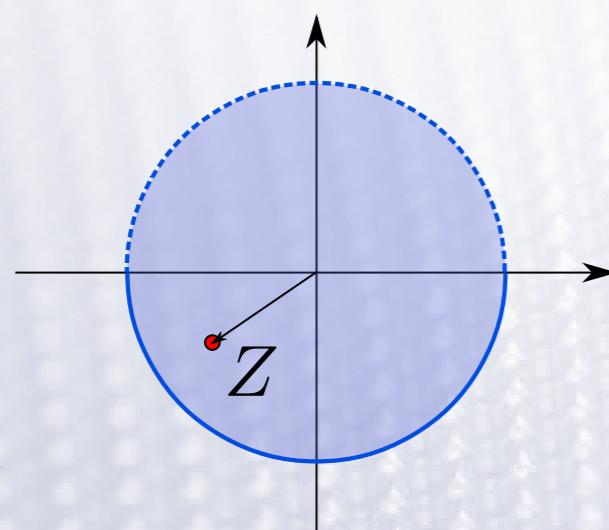
Macroscopic equations

If external currents are distributed according to Lorentz function with width Δ and center $\bar{\eta}$. (Network consists both excitable and spiking neurons)

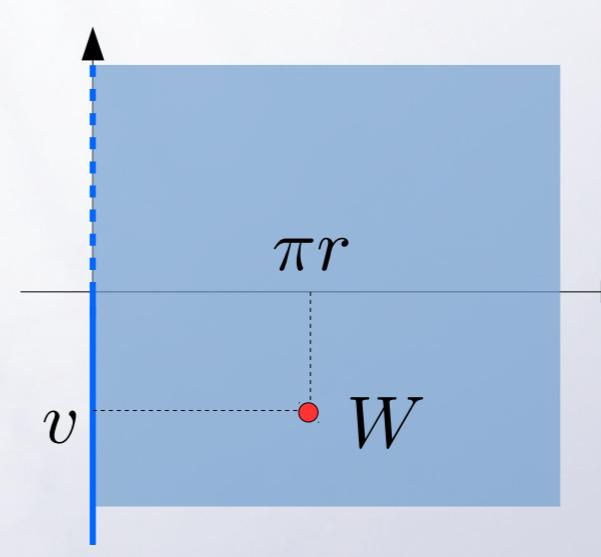
$$\begin{aligned}\dot{r}_k &= \Delta/\pi + 2r_k v_k, \\ \dot{v}_k &= \bar{\eta} + v_k^2 - \pi^2 r_k^2 + I^{syn}\end{aligned}$$

Relation with Kuramoto order parameter:

$$Z = \int \int \rho(V|\eta, t) g(\eta) e^{i\theta} d\eta d\theta$$



$$Z = \frac{1-W^*}{1+W^*}$$



A diagram of the complex plane with a horizontal and vertical axis. A shaded blue rectangle represents the unit disk. A point W is marked with a red dot inside the rectangle. A vertical dashed line extends from the point W to the horizontal axis, labeled v . A horizontal dashed line extends from W to the vertical axis, labeled πr .

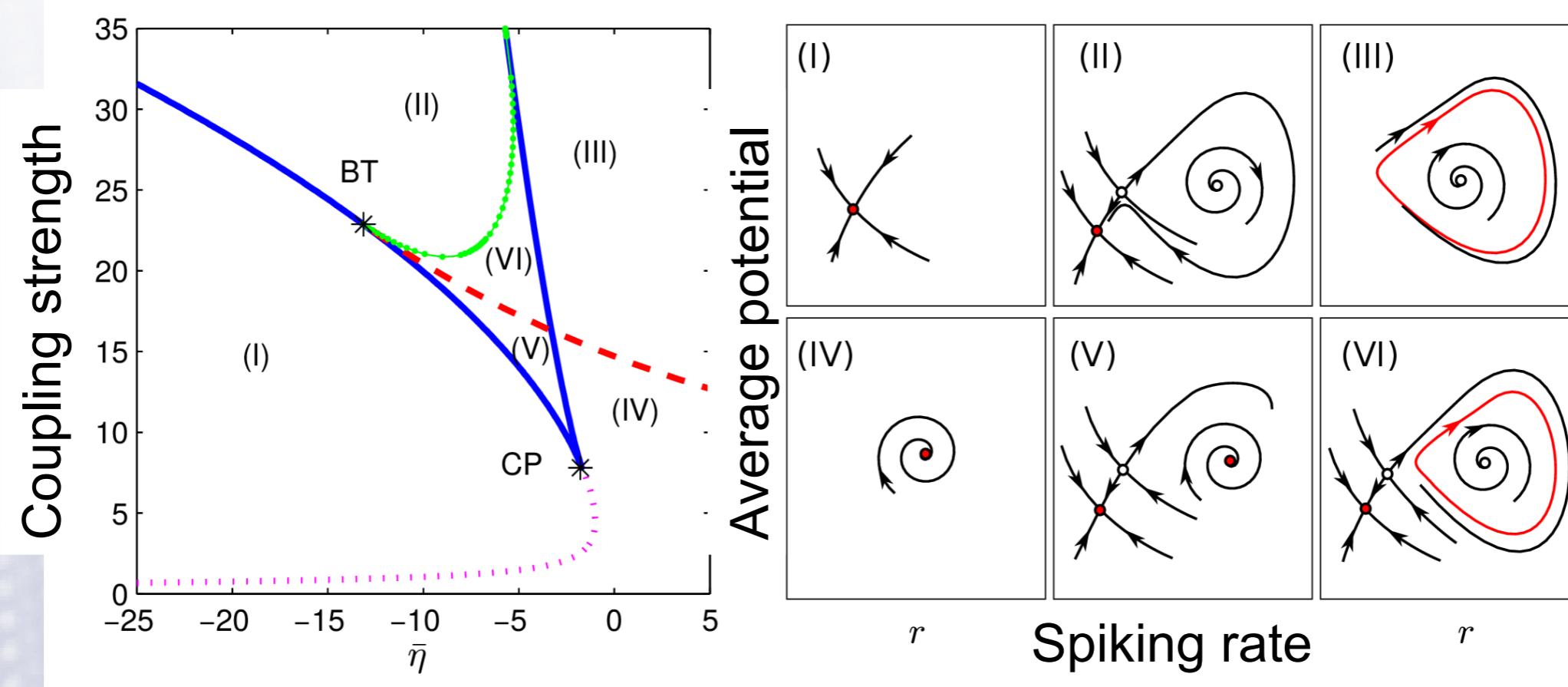
$$W = \frac{1-Z^*}{1+Z^*}$$

$$W = \pi r + iv$$

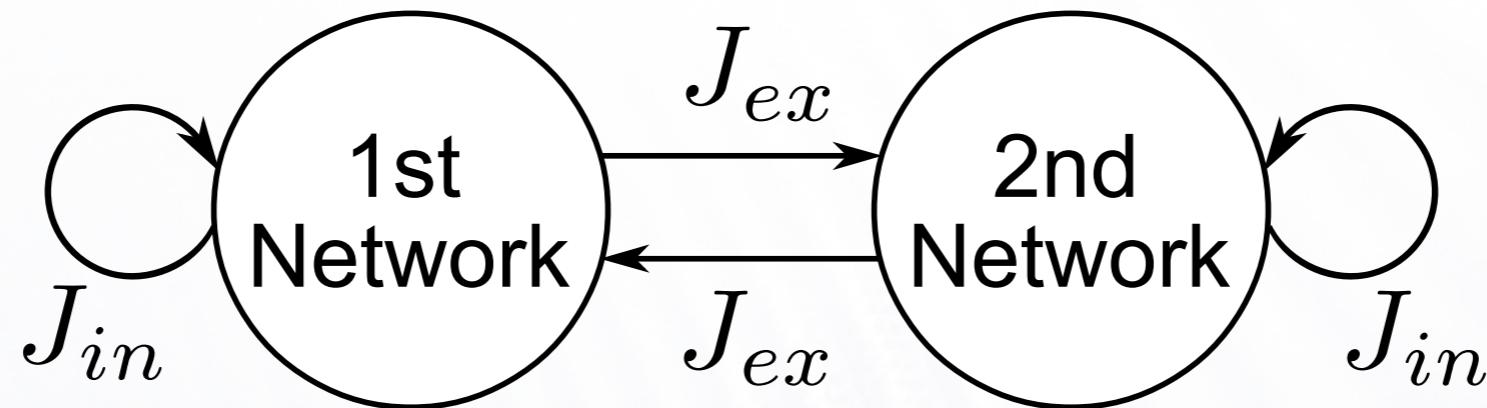
Macroscopic equations

If external currents are distributed according to Lorentz function with width Δ and center $\bar{\eta}$

$$\begin{aligned}\dot{r}_k &= \Delta/\pi + 2r_k v_k, \\ \dot{v}_k &= \bar{\eta} + v_k^2 - \pi^2 r_k^2 + I^{syn}\end{aligned}$$



Identical populations



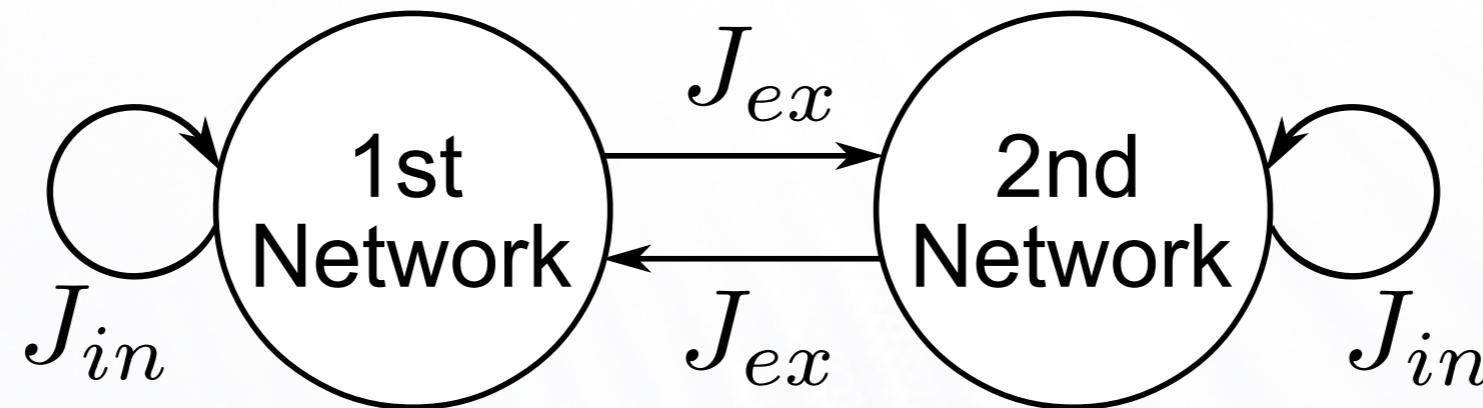
interactions

$$\begin{aligned}\dot{V}_{j,0} &= V_{j,0}^2 + \eta_{j,0} + J_{in}S_0 + J_{ex}S_1 \\ \dot{V}_{j,1} &= V_{j,1}^2 + \eta_{j,1} + J_{in}S_1 + J_{ex}S_0\end{aligned}$$

internal external

$$S_k = \frac{V_{th}}{N} \sum_{i=1}^N H(V_{i,k} - V_{th})$$

Identical populations



interactions

$$\begin{aligned}\dot{V}_{j,0} &= V_{j,0}^2 + \eta_{j,0} + J_{in}S_0 + J_{ex}S_1 \\ \dot{V}_{j,1} &= V_{j,1}^2 + \eta_{j,1} + J_{in}S_1 + J_{ex}S_0\end{aligned}$$

internal external

Macroscopic equations:

$$\begin{aligned}\dot{r}_k &= \Delta/\pi + 2r_k v_k, \\ \dot{v}_k &= \bar{\eta} + v_k^2 - \pi^2 r_k^2 + J_{in}S_k + J_{ex}S_{1-k} \\ k &= 0, 1\end{aligned}$$

Symmetric solutions

Transverse and longitudinal coordinates:

$$R = (r_0 - r_1)/2,$$

$$P = (v_0 - v_1)/2,$$

$$Q = (r_0 + r_1)/2,$$

$$M = (v_0 + v_1)/2$$

Symmetric solutions: $(0, 0, Q, M)$

Equations for Q and M are identical to eq. of a single population with a modified coupling strength $J=J_{in}+J_{ex}$ (equilibrium points and limit cycles)

$$\begin{aligned}\dot{Q} &= \Delta/\pi + 2QM, \\ \dot{M} &= \bar{\eta} + M^2 - \pi^2 Q^2 + JV_{th}S.\end{aligned}$$

$$\begin{aligned}\dot{r}_k &= \Delta/\pi + 2r_k v_k, \\ \dot{v}_k &= \bar{\eta} + v_k^2 - \pi^2 r_k^2 + JV_{th}S\end{aligned}$$

Symmetric solutions

Transverse and longitudinal coordinates:

$$R = (r_0 - r_1)/2,$$

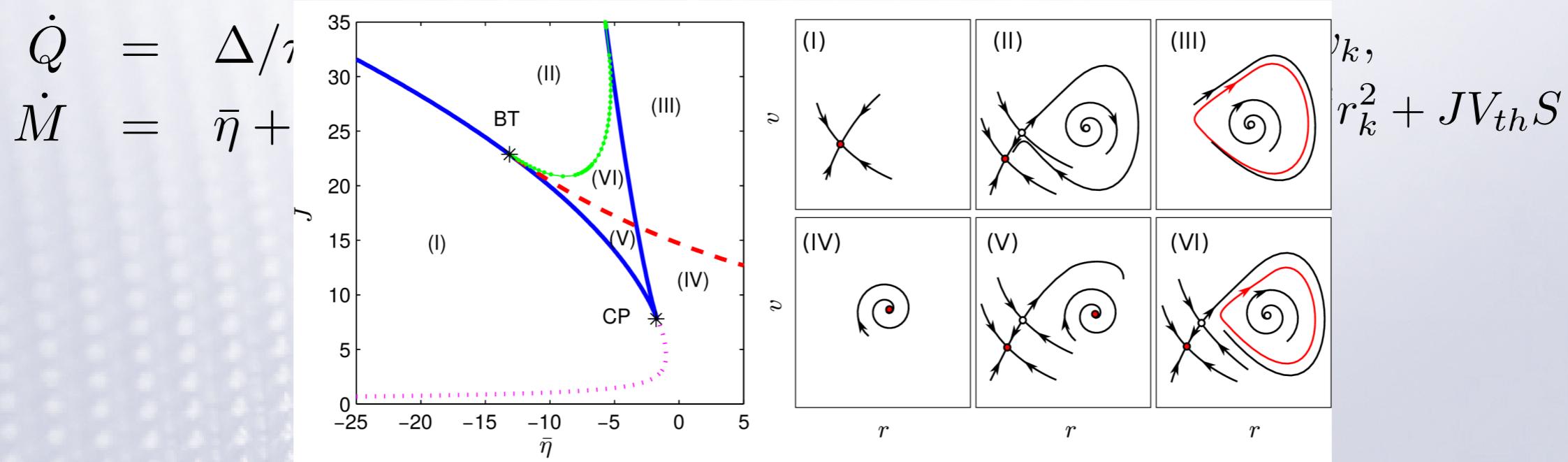
$$P = (v_0 - v_1)/2,$$

$$Q = (r_0 + r_1)/2,$$

$$M = (v_0 + v_1)/2$$

Symmetric solutions: $(0, 0, Q, M)$

Equations for Q and M are identical to eq. of a single population with a modified coupling strength $J=J_{in}+J_{ex}$ (equilibrium points and limit cycles)



Symmetric solutions

Transverse and longitudinal coordinates:

$$R = (r_0 - r_1)/2,$$

$$P = (v_0 - v_1)/2,$$

$$Q = (r_0 + r_1)/2,$$

$$M = (v_0 + v_1)/2$$

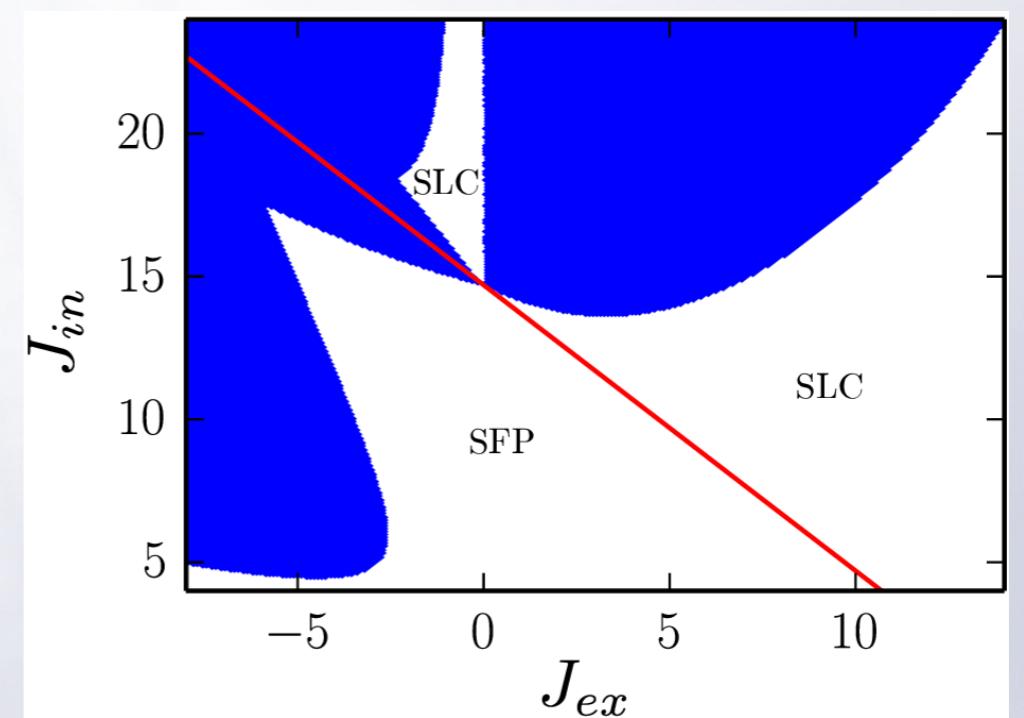
Symmetric solutions: $(0, 0, Q, M)$

Equations for Q and M are identical to eq. of a single population with a modified coupling strength $J=J_{in}+J_{ex}$ (equilibrium points and limit cycles)

$$\begin{pmatrix} \delta \dot{R} \\ \delta \dot{P} \end{pmatrix} = A \begin{pmatrix} \delta R \\ \delta P \end{pmatrix}$$

$A(t) = \text{const.}$ stationary points

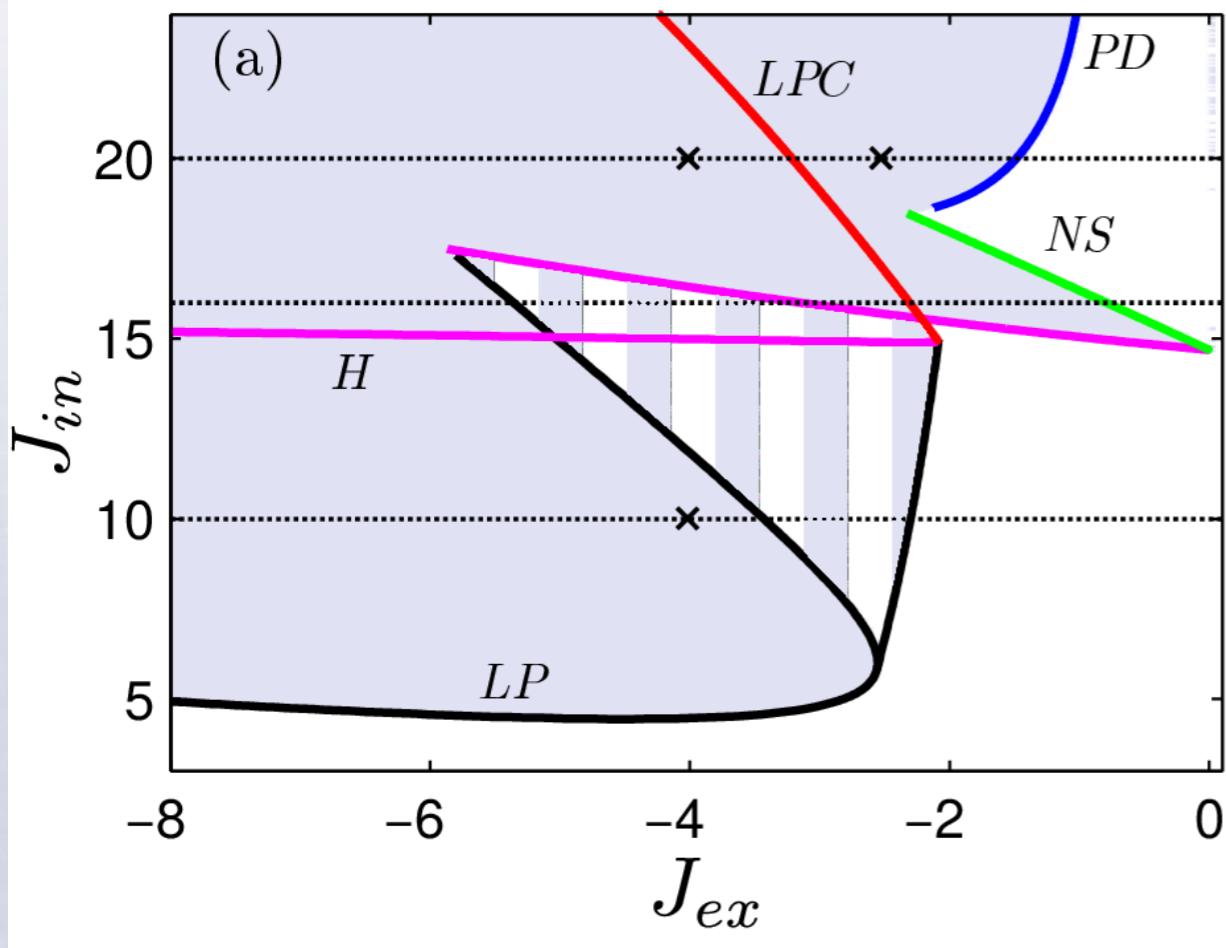
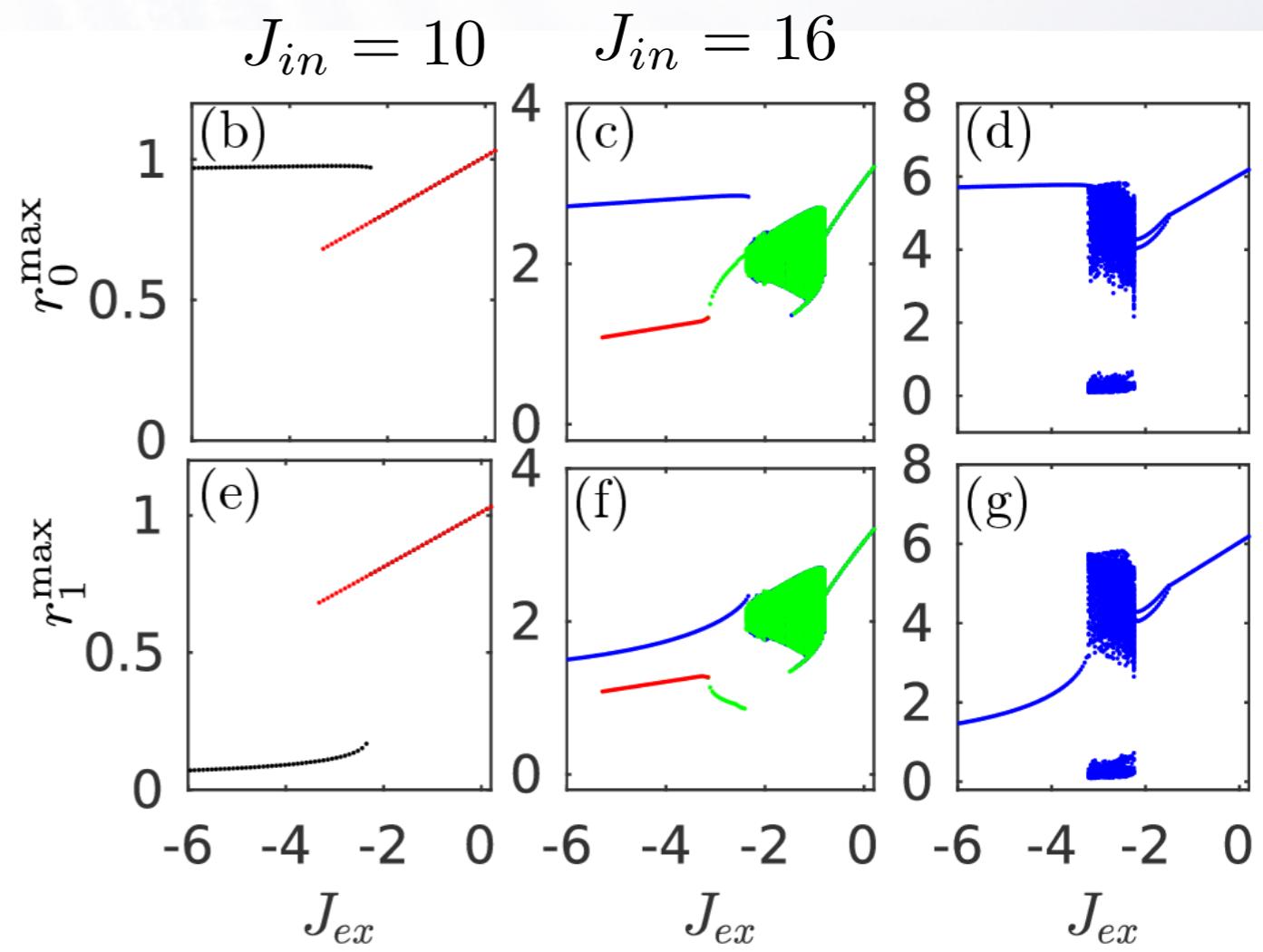
$A(t) = A(t + T)$ limit cycles



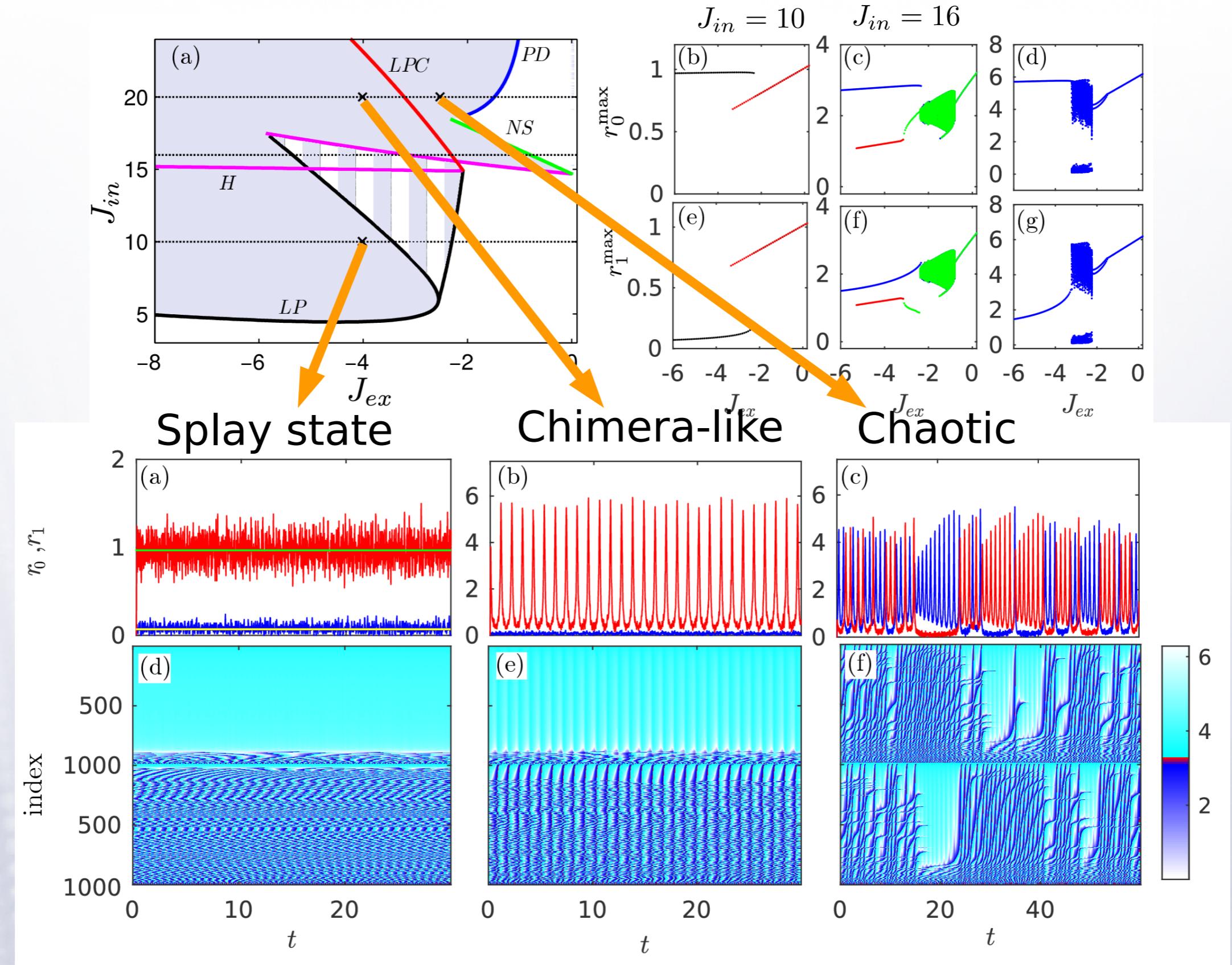
Non-symmetric solutions

Macroscopic equations:

$$\begin{aligned}
 \dot{r}_k &= \Delta/\pi + 2r_k v_k, & k = 0, 1 \\
 \dot{v}_k &= \bar{\eta} + v_k^2 - \pi^2 r_k^2 + J_{in} S_k + J_{ex} S_{1-k}
 \end{aligned}$$

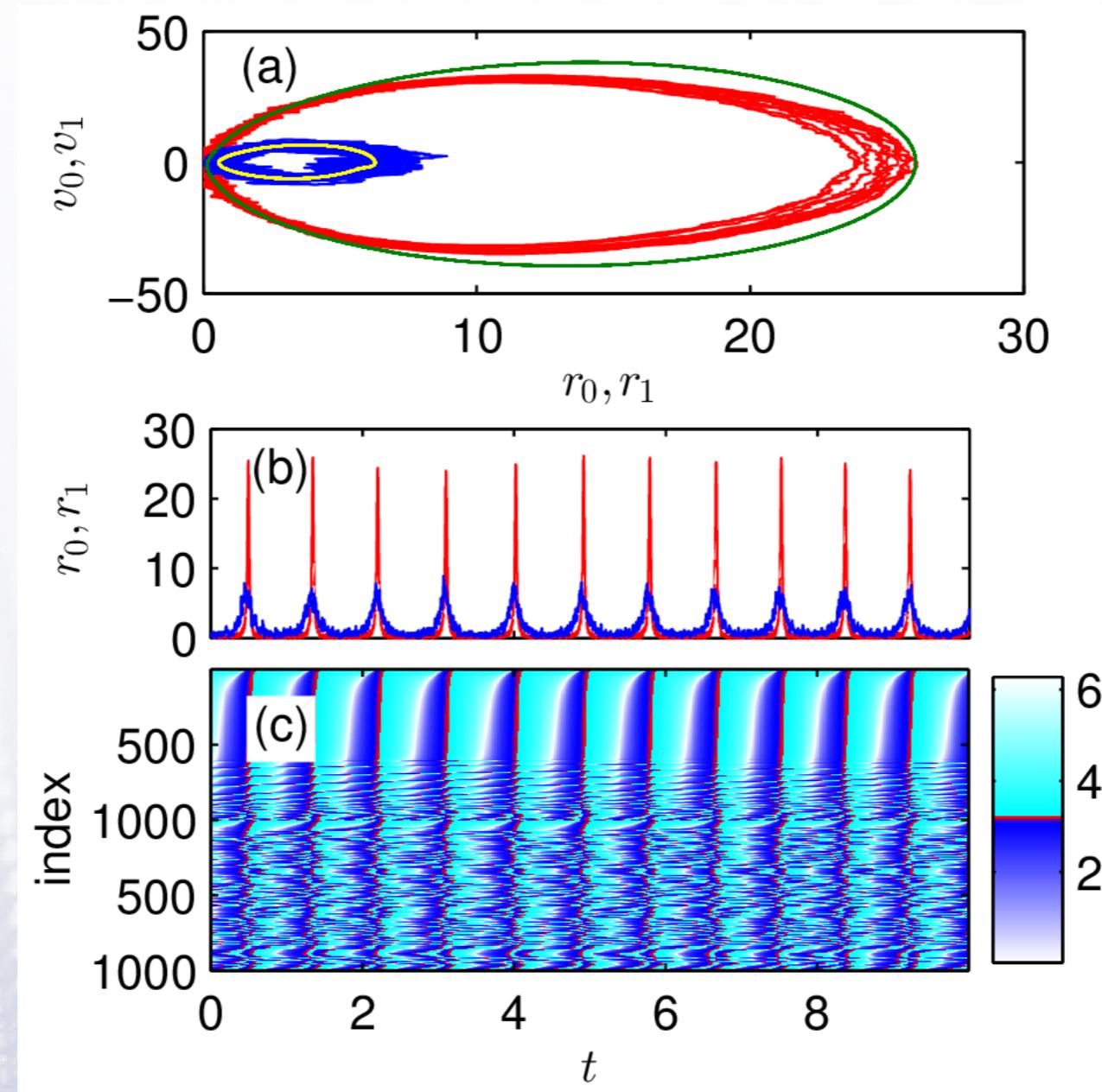


Non-symmetric solutions



Non-symmetric solutions

Chimera-like state for external excitatory coupling



Conclusions

Competition of neural interactions within and between the populations may lead to a rich variety of nonsymmetrical patterns, including splay state, antiphase periodic oscillations, chimera like states and chaotic oscillations as well as bistabilities between them.

- I. Ratas and K. Pyragas, *Symmetry breaking in two interacting populations of quadratic integrate-and-fire neurons*, [Phys. Rev. E](#) 96, 042212 (2017).
- I. Ratas and K. Pyragas, *Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons*, [Phys. Rev. E](#) 94, 032215 (2016).

ACKNOWLEDGMENT

This work was supported by Grant No. S-MIP-17-55
of the Research Council of Lithuania