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Motivation

Synchronization — widely observed phenomena

Pathological synchronization — symptoms of neurological dis-

eases
Synchronized state — may be not uniquely stable
Desynchronization methods:

|) open loop (e.g. coordinates reset, high frequency stimulation)

II) closed loop (e.g. PID, delayed feedback, act-and-wait)



Synchronization estimation

If oscillator have uniquely predefined phase, then synchronization is estimated by the
order parameter:.
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Synchronization estimation

In real life to define separate oscillators phase in coupled network is impossible.

Neuron network models have shape
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Synchronization estimation

In real life to define separate oscillators phase in coupled network is impossible.

Neuron network models have shape

Oscill. Egs.

Coupling
W(xl, cevy ZEN),

Synchronization may be estimated by the mean potential field variation:
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Synchronization bistability

Incoherent and partially synchronized stable states
coexist at a particular range of parameters.
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Incoherent and partially synchronized stable states
coexist at a particular range of parameters.

Example:

“Kuramoto Model of Coupled Oscillators with Positive and Negative Coupling Parameters: An
Example of Conformist and Contrarian Oscillators” by H. Hong and S. H. Strogatz (PRL, 2011)

conformists

K7 & |
9]' = wj|+ Wl Zsin(é’k — 9])
k=1
N
K
WQ > sin(, — 0;)
k:Nl—}—l Y

contrarians



Synchronization bistability

Incoherent and partially synchronized stable states
coexist at a particular range of parameters.
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Synchronization bistability

Other examples for phase oscillators:

 Bimodal frequencies distributions® 4, = w, + £V sin(6, — 6;)
Frequencies distributed by

e Kuramoto-Sakaguchi model=2 the sum of two Lorentz distr.
e Scale free network3 :
—Wo 0 Wo
Frequencies

[1] E. Martens et al. ,“Exact results for the Kuramoto model with a bimodal frequency distribution”, Phys. Rev. E,

(2009)
[2] O. E. Omel'chenko and M. Wolfrum, "Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model",

Phys. Rev. Lett., (2012)
[3] J. G. Gardenes et al., “Explosive Synchronization Transitions in Scale-Free Networks”, Phys. Rev. Lett. (2011)
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Other examples for phase oscillators:

» Bimodal frequencies distributions?

« Kuramoto-Sakaguchi model2 0; = w; + B SV sin(fy, — 6; + «)
Some specific unimodal
e Scale free networks3 frequencies distributions

[1] E. Martens et al. ,“Exact results for the Kuramoto model with a bimodal frequency distribution”, Phys. Rev. E,

(2009)
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Phys. Rev. Lett., (2012)
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Synchronization bistability

Other examples for phase oscillators:

» Bimodal frequencies distributionst Probability to be attached to k

oscillators ~ k=7

e Kuramoto-Sakaguchi model=2

e Scale free networks3

éj = Wwj + K Z]k\le Aij Siﬂ(@k — 9])
w; ~ 7 attached oscillators

[1] E. Martens et al. ,“Exact results for the Kuramoto model with a bimodal frequency distribution”, Phys. Rev. E,

(2009)
[2] O. E. Omel'chenko and M. Wolfrum, "Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model",

Phys. Rev. Lett. (2012)
[3] J. G. Gardenes et al., “Explosive Synchronization Transitions in Scale-Free Networks”, Phys. Rev. Lett. (2011)



Synchronization bistability

FitzHugh-Nagumo synaptically coupled neurons [“‘conformists-contrarian” analogue]:
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some threshold.
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Algorithms

o Systems synchronization and phase reversion by 1

with external periodic force
= a cos(S2t + o(t)

DOO

The moment of external force disconnection should be determined empirically.

» Stimulate system with high frequency periodic
signal with decaying amplitude

F(t) = a exp(—t/7) cos(Qt)



Results

“Conformists-contrarians” model [phase change]:

N
0 :ijr%ZKk sin(fx — 60;) + asin(Q2t — 6,) %0_;._-_ » 2
System: % 20 40 610‘ 80 100 120
Coupling Ky € {-3,1} e

Number of oscillators N = 10000

Central frequency wo =0

Force parameters:

Amplitude a=0.2

Frequency N=0




Results

“Conformists-contrarians” model: ,
Evolution of order parameters

N 1
9]' = wj+ %ZK]{SIIl(Hk —Hj) 0.8}
k=1 0.6}
+aexp(—t/7T)sin(Qt — 6,) S
02|
System: 0 , ‘
0 500 1000 1500
Coupling K, e {-3,1} ‘ | | |

0.8 joasnsas

Number of oscillators /N = 10000

0.6
™
&~

Central frequency wo = 0.3 0.4}
0.2
Force parameters: 0 ____ SIS
0 500 1000 1500
: Time
Amplitude a =
Frequency () =

Decay time T = 200



Results

FitzHugh-Nagumo “conformists-contrarian” model:

Number of neurons: N = 20000
Mean field frequency:  wo =~ 27/75
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FitzHugh-Nagumo “conformists-contrarian” model:

Number of neurons:
Mean field frequency:

N = 20000
wo ~ 27’(’/75

Phase change: F(t) = a cos(Qt + é(t))

Mean potential

D @

2F 'i ' :3'

. l

A

—

|
—

‘ |
W'll“HH”WHW”W:‘
|

_ot 1 |

0 1000 2000 3000 4000 5000
Time

External force parameters:
a = 0.05, Q =27/75

6000

- 3|l neurons
— EXCitatory

inhibitory




Results

FitzHugh-Nagumo “conformists-contrarian” model:

Number of neurons: N = 20000
Mean field frequency:  wo =~ 27/75

Phase change: F(t) = a cos(Qt + ¢(t)) Decaying periodic force: F(t)=a exp(—t/7) cos(£t)
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Conclusion

* Proposed algorithms are able to drive
synchronized bistable systems to
desynchronized state

Further work and unanswered gquestions:

 How frequent is investigated systems in the nature?

* How to improve algorithms stability? (dependence on number of oscillators, noise, ...)
 How to estimate control parameters?

« efc...

Thank you for attention!
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