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Motivation

● Synchronization – widely observed phenomena

● Pathological synchronization – symptoms of neurological dis-

eases

● Synchronized state – may be not uniquely stable 

● Desynchronization methods:

     I) open loop (e.g. coordinates reset, high frequency stimulation)

II) closed loop (e.g. PID, delayed feedback, act-and-wait)
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Synchronization estimation

In real life to define separate oscillators phase in coupled network is impossible.

Synchronization may be estimated by the mean potential field variation:

Neuron network models have shape

Oscill. Eqs. Coupling

desynchronized state synchronized state
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Synchronization bistability

● Bimodal frequencies distributions1

 
● Kuramoto-Sakaguchi model2

● Scale free network3

[1] E. Martens et al. ,“Exact results for the Kuramoto model with a bimodal frequency distribution”, Phys. Rev. E, 
(2009)
[2] O. E. Omel'chenko and M. Wolfrum, "Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model",  
Phys. Rev. Lett., (2012) 
[3]  J. G. Gardenes et al., “Explosive Synchronization Transitions in Scale-Free Networks”, Phys. Rev. Lett. (2011)

Other examples for phase oscillators:

Frequencies distributed by 
the sum of two Lorentz distr.
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frequencies distributions
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Synchronization bistability

FitzHugh-Nagumo synaptically coupled neurons [“conformists-contrarian” analogue]:  

k'th neuron acts on j'th only when exceeds 
some threshold. 

Excitatory Inhibitory
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2.5 -2.5

Mean field variation of



Algorithms

● Systems synchronization and phase reversion by π 
with external periodic force

● Stimulate system with high frequency  periodic 
signal with decaying amplitude

The moment of external force disconnection should be determined empirically.



Results

“Conformists-contrarians” model [phase change]:

System:

Force parameters:

Coupling

Number of oscillators

Central frequency

Amplitude

Frequency



Results

“Conformists-contrarians” model:
Evolution of order parameters 

System:

Force parameters:

Coupling

Number of oscillators

Central frequency

Amplitude

Frequency

Decay time
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Results

FitzHugh-Nagumo “conformists-contrarian” model:  

Phase change: Decaying periodic force:

External force parameters:

Number of neurons:

Mean field frequency:

External force parameters:

all neurons
excitatory
inhibitory

1 12

3
2



Conclusion

● Proposed algorithms are able to drive 
synchronized bistable systems to 
desynchronized state  

Further work and unanswered questions:
● How frequent is investigated systems in the nature?
● How to improve algorithms stability? (dependence on number of oscillators, noise, ...)
● How to estimate control parameters?
● etc...
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The end
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