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Motivation

» Possible application for the deep brain stimulation
* Previously proposed desynchronisation methods
P.A. Tass, Biol. Cybern., 89:81-88, 2003

K. Pyragas, O.V. Popovich and P.A. Tass, Europhys. Lett., 80:40002, 2007
N. Tukhlina, M. Rosenblum, A. Pikovsky, and J. Kurths, Phys. Rev. E, 75:011918, 2007

 Drawbacks

+ |t uses more than one electrode

+ Feedback is not protected from stimulation signal direct impact
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Algorithm scheme

In the first stage, we measure and
memorize the output of the control-
free system.
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Algorithm scheme

Stage |l

“X J— uonenung

In the first stage, we measure and In the second stage, we apply the
memorize the output of the control- feedback control using the
free system. memorized signal. Both stages take

equal amount of time 1.
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Desynchronisation of Landau-Stuart
oscillators

35 = (iw; + 1~ %)z + KZ — PZ,G(t) (1)

oscillator coupling  control

il o R
Complex variable: z; = p;je™’

N
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Effect of the averaged field: 7 —= N 231 Z;
J:

The feedback coefficient P is complex measure.

N
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System synchronisation is defined by order parameter: 7 = N E e
=1
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Desynchronisation of Landau-Stuart
oscillators
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Equation for order parameter
?

: . u
Equations for oscillators Equation for the order parameter r

2y = =
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Equation for order parameter
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Equations for oscillators Equation for the order parameter r

2y = =

Equations for oscillators phases
(Kuramoto model)

b; = ...
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Equation for order parameter
?

: : —
Equations for oscillators Equation for the order parameter r
e =
Equations for oscillators phases
(Kuramoto model)
6 = ...
Assumptions:

1. All oscillators have the same radius.
2.The number of oscillators is infinite i.e. continuous case.

- Ott-Antonsen ansatz — infinite size coupled oscillators behave low dimensional
dynamics

3. The intrinsic oscillators frequencies are distributed by the Lorentzian (with central
frequency wg and width A ).

Edward Ott and Thomas M. Antonsen, Chaos, 18:037113, 2008
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Desynchronisation of Landau-Stuart
oscillators

f= K 4 Lo — P viteo ity | (2)
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Desynchronisation of Landau-Stuart
oscillators

f= K 4 Lo — P viteo ity | (2)

Solutions of Landau-Stuart equations and reduced equation for order

parameter:
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Desynchronisation stability zones

Linearization reduces initial problem to unstable fixed point stabilisation:
¢ = \x — G({t)Pz, (3)
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Desynchronisation stability zones

Linearization reduces initial problem to unstable fixed point stabilisation:
& =z — G(t)Pz, (3)

Zeroth point stability can be
estimated studying one registration-
stimulation period.
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| | |
t t+ 71 t+ 21

Xn_|_1 — C(P, T)Xn

Stable when

IC(P,7)| <1
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Synaptically coupled Hodgkin-
Huxley(HH) neurons

Realistic neuron model:

.C?}k = F} (Uk, mg, hi, nk) + Ik"— Isyn,k‘._. PG(t)Vq; (4)
Standart HH model

Coupling Control

Vk - neurons membrane potential
I - regulate neurons frequency
Isyn 1 - Synaptic current- makes synchronisation
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Synaptically coupled Hodgkin-
Huxley(HH) neurons
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Solution of HH equations.
Green- sync state (withouth
algorithm), red- algorithm is on,
blue line represent stimulation
current.
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Desyncronisation parameter is
defined as ratio between variance
of mean field when stimulation is
on and free system:

| Var (Vstim) :
S = \/ Var (Vrree) smaller is better

Depicted in colors.
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Conclusions

» Separation of the registration and stimulation stages in time allow implement
algorithm with one electrode and avoid stimulation direct influence to feedback
signal;

* Analytical estimations and numerical simulations confirm that the algorithm

desynchronise globally coupled Landau-Stuart oscillators and synaptically coupled

Hodgkin-Huxley neurons.

Acknowledgments

This research was funded by the European Social Fund under the Global Grant measure (grant
No. VP1-3.1-SMM-07-K-01-025)

Irmantas Ratas (irmantas.ff.vu@gmail.com), Kestutis Pyragas



Irmantas Ratas (irmantas.ff.vu@gmail.com), Kestutis Pyragas



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

