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ABSTRACT

Weakly coupled limit cycle oscillators can be reduced into a system of weakly coupled phase models. These phase models are helpful to analyze
the synchronization phenomena. For example, a phase model of two oscillators has a one-dimensional differential equation for the evolution
of the phase difference. The existence of fixed points determines frequency-locking solutions. By treating each oscillator as a black-box
possessing a single input and a single output, one can investigate various control algorithms to change the synchronization of the oscillators.
In particular, we are interested in a delayed feedback control algorithm. Application of this algorithm to the oscillators after a subsequent
phase reduction should give the same phase model as in the control-free case, but with a rescaled coupling strength. The conventional delayed
feedback control is limited to the change of magnitude but does not allow the change of sign of the coupling strength. In this work, we present
a modification of the delayed feedback algorithm supplemented by an additional unstable degree of freedom, which is able to change the sign
of the coupling strength. Various numerical calculations performed with Landau–Stuart and FitzHugh–Nagumo oscillators show successful
switching between an in-phase and anti-phase synchronization using the provided control algorithm. Additionally, we show that the control
force becomes non-invasive if our objective is stabilization of an unstable phase difference for two coupled oscillators.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0033391

More than 350 years ago, Huygens observed two pendulum clocks
attached to a board placed on backs of two chairs. He discov-
ered that, independently of the initial conditions of the pen-
dulums, after a while, they became swinging toward each other
and then apart. Nowadays, it is called anti-phase synchroniza-
tion when two oscillators are coupled in such a way that the
phases of the oscillators repulse each other, and the phase dif-
ference settles to π . Another spectacular synchronization case
is when two metronomes are placed on a light platform that
can roll on light cylinders. For such a case, both metronomes
simultaneously swing to the same sides, exhibiting an in-phase
synchronization when the coupling attracts one oscillator’s phase
to another. A theory behind the analysis of weakly coupled limit
cycle oscillators, called a phase reduction, allows one to determine
what kind of synchronous behavior may occur. In this work, we

assume that one can measure some output from the oscillator,
and based on that measurement, it is possible to affect the oscil-
lator’s state. This scheme is known as a black-box control with
a single input and a single output. Under such a framework, we
present the control algorithm capable of flipping the coupling
sign in the phase equations. It means that under control, the
oscillators “feel” opposite phase coupling than naturally exists.
Thus, it potentially allows one to force the in-phase synchroniza-
tion for the Huygen’s clocks or the anti-phase synchronization for
the metronomes. Moreover, the phase reduction predicts that if a
control-free system possesses in-phase or anti-phase synchroniza-
tion, the opposite synchronization also exists; yet, it is unstable.
Once our control algorithm stabilizes the unstable synchroniza-
tion point, the control force vanishes. Thus, the algorithm is
non-invasive.
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I. INTRODUCTION

Starting from a famous Huygens’ work on “an odd kind sym-
pathy” synchronization as a phenomenon appears in various fields,
such as biology,1–3 chemistry,4,5 physics,6,7 sociology,8,9 engineering
systems,10–12 etc. The main theoretical tool to investigate the syn-
chronization between weakly coupled limit cycle oscillators is a
phase reduction.13–15 It allows us to write a dynamical equation only
for the phase of a particular oscillator instead of dealing with a whole
phase space.

The conventional phase reduction, which deals with ordi-
nary differential equations, can be extended to delay differential
equations.16,17 The interesting results were obtained in Ref. 16 for
the case of a delayed feedback control (DFC) force, which is con-
structed as a difference between delayed and undelayed feedback
signals. It was shown that the phase reduction of an oscillator under
the DFC gives the same phase equation as in the control-free case,
only an inter-oscillatory coupling strength is re-scaled. This prop-
erty can be exploited to “effectively” increase or decrease coupling
strength and, as a consequence, to control the synchrony.18 The uni-
versality of the re-scaling law allows one to implement the control
of the synchronization independently on complexity of the particu-
lar oscillatory unit or topology of a network of coupled oscillators.
A similar technique is used to achieve the in-phase synchronization
for the near-identical oscillator units;19 yet, the algorithm requires
the knowledge of the topology of the network.

Despite the advantages mentioned above, the conventional
delayed feedback scheme cannot change the sign of the coupling
strength, and the reason for that is a so-called odd-number limita-
tion theorem20 stating that the target limit cycle becomes unstable
when the coupling strength flips its sign. The aim of this paper is
to modify the delayed feedback controller by adding an additional
unstable degree of freedom, such that the limit cycle is stable exactly
in the case where the sign of the coupling strength is reversed.

The effect of the sign’s flipping is illustrated on two coupled
oscillators, which naturally are in a phase-locked regime. The phase
difference equation of oscillators is one-dimensional and has stable
and unstable fixed points representing in-phase and anti-phase syn-
chronization states. The stability of the synchronous regime depends
on a coupling form. The application of the controller to oscillators is
equivalent to reversing of time flow; thus, it flips the stability of the
synchronization points. Moreover, once the stabilized synchroniza-
tion point is achieved, the control force vanishes, representing the
non-invasive nature of the controller.

This paper is organized as follows. In Sec. II, we describe a
mathematical formulation of the problem. Section III is devoted
to the stability analysis of a single oscillator under the unstable
delayed feedback control. Here, we show that the stability almost
always can be achieved. The main equations of the controller are
presented by Eq. (43). In Sec. IV, the numerical results for the
FitzHugh–Nagumo and the Landau–Stuart oscillators are presented.
In Sec. V, we supplement the controller by including a slowly chang-
ing time delay and demonstrate the non-invasive nature of the
controller. Section VI demonstrates the disruption of a frequency-
locking synchronization in the oscillator network by applying the
controller to only one unit of the network. Finally, Sec. VII contains
a summary of the paper.

II. PROBLEM FORMULATION

A. Complex network of weakly coupled limit cycle

oscillators

We study general class of N limit cycle oscillators mutually
coupled between each other and forming a network of an arbitrary
topology. Each oscillator is assumed to be as a black-box under
single-input single-output control,

ẋ(i) = f(i)
(

x(i), r(i)
)

+ ε

N
∑

j=1
j6=i

a(ij)G(ij)
(

x(j), x(i)
)

, (1a)

s(i)(t) = g(i)
(

x(i)(t)
)

; (1b)

here, x(i) represents the state vector of the ith oscillator, f(i)(x, 0)
is a vector field governing uncoupled and uncontrolled oscillators
such that the differential equation ẋ = f(i)(x, 0) has a stable limit
cycle solution ξ (i)(t + T(i)) = ξ (i)(t) with the natural period T(i), the
dimensionless coupling constant ε is a small parameter of the sys-
tem, a(ij) is an element of a network adjacency matrix that encodes
network topology, and G(ij) represents coupling function. In order
to ensure unique factorization of the coupling term, we assume that
a(ij) is equal either to one or zero. The scalar signal s(i)(t) represents
single output, where the function g(i)(x(i)) encodes transformation
from the state vector to the measurable scalar quantity. The vari-
able r(i) stands for single input and is constructed as a feedback force
from the knowledge of s(i). We assume that the difference between
the natural periods |T(i) − T(j)| as well as the difference between the
natural frequencies |�(i) −�(j)| = |2π/T(i) − 2π/T(j)| is of the same
order as the small parameter ε. To be more precise, one can assume
that the vector fields f(i) parametrically depend on ε such that all nat-
ural periods T(i)(ε) at the point ε = 0 are equal to a “central” period
T = T(i)(0). Our aim is to obtain analytical results as an expansion
with respect to a small coupling constant, and throughout the paper,
we restrict our analysis only to the zeroth and first-order terms of
expansions with respect to ε. Thus, one can apply a combination of
a phase reduction approach13–15 and an averaging method.21

B. Network of the phase-oscillators in a control-free

regime

In this subsection, we analyze the control-free regime, i.e., all
inputs r(i) = 0. For this case, one can temporarily ignore Eq. (1b). By
picking a “central” frequency � = 2π/T such that |�(i) −�| ∼ ε

and applying the phase reduction13,14 together with the averaging
method,21 the phase model of the oscillatory network (1a) in the
rotating frame� reads

ψ̇ (i) = ω(i) + ε

N
∑

j=1
j6=i

a(ij)H(ij)
(

ψ (j) − ψ (i)
)

, (2)

where ψ (i) ∈ [0, 2π) represents the phase of the ith oscillator,
ω(i) = �(i) −� is a relative frequency, and a scalar phase-coupling
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function

H(ij)(χ) =
1

T

∫ 2π

0

[

v(i)
( s

�(i)

)]T

· G(ij)

(

ξ (j)
(

s + χ

�(j)

)

, ξ (i)
( s

�(i)

)

)

ds. (3)

Here, [·]T denotes a transposed vector and v(i)(t + T(i)) = v(i)(t)
stands for a phase response curve (PRC) of the ith oscillator. Note
that the PRC is a left Floquet mode corresponding to the trivial Flo-
quet multiplier, µ = 1, and normalized to the right Floquet mode,

ξ̇
(i)
(t), as

∫ Ti

0

[

v(i)(t)
]T

· ξ̇
(i)
(t)dt = 1.

C. Network of the phase-oscillators under delayed

feedback control

Now, let us analyze the complex network (1) under the DFC
force of the following form:

r(i)(t) = K(i)
[

s(i)
(

t − τ (i)
)

− s(i)(t)
]

, (4)

where τ (i) is a time delay of the ith control force and K(i) represents
control gain. We assume that all time delays are close to the natu-
ral periods of the oscillators |τ (i) − T(i)| ∼ ε; therefore, r(i)(t) always
remains small (r(i)(t) ∼ ε). Such control force (4) does not change
the profile of the particular oscillator if the time delay is equal to
the natural period, or in other words, for ε = 0 and τ (i) = T(i), each
oscillator has the same periodic solution as for the control-free case
ξ (i)(t). However, the stability of the limit cycle ξ (i)(t) changes due to
the control force, and, as a consequence, the oscillator’s response
to external perturbation changes too. As it is shown in Refs. 18
and 19, the network (1) together with (4) reduces into the phase
model similar to (2),

ψ̇ (i) = ω
(i)
eff + ε

(i)
eff

N
∑

j=1
j6=i

a(ij)H(ij)
(

ψ (j) − ψ (i)
)

. (5)

The phase-coupling function H(ij) is not affected by the DFC, while
the frequency and coupling constant change and take the following
forms:

ε
(i)
eff = εα

(

K(i)C(i)
)

(6)

and

ω
(i)
eff = ω(i) +�

T(i) − τ (i)

T

[

1 − α
(

K(i)C(i)
)]

. (7)

The function α has a simple form α(x) = (1 + x)−1. The constant
C(i) reads as an integral

C(i) =

∫ T(i)

0

{

[

v(i)(t)
]T

· D2f
(i)
(

ξ (i)(t), 0
)

}

·
{

[

∇g(i)
(

ξ (i)(t)
)]T

· ξ̇
(i)
(t)
}

dt. (8)

Here, D2 denotes differentiation of the vector field with respect to
the second argument,

D2f (ξ(t), 0) =
∂f (ξ(t), r)

∂r

∣

∣

∣

∣

r=0

. (9)

As one can see from (6) and (7), in the case of the time delays being
equal to the natural periods τ (i) = T(i), the effective frequencies

remain unaffected ω(i)eff = ω(i), while the effective coupling strength
rescales. Since the control force (4) may be constructed without
knowledge of the particular oscillator’s vector field, it can be used
to control synchronization in the network.18 By appropriate choice
of the control gain K(i), the re-scaling factor α may gain any posi-
tive or negative values. In particular, for

(

K(i)C(i)
)

< −1, the factor

α is negative and the effective coupling strength ε(i)eff changes its sign.
Nevertheless, the problem here is that the phase model (5) is rel-
evant only until the limit cycle ξ (i)(t) is stable. According to the
odd-number limitation theorem,20 the periodic orbit ξ (i)(t) is an
unstable solution of the differential equation ẋ(i) = f(i)

(

x(i), r(i)
)

with

r(i)(t) being of the form of (4) and with τ (i) = T(i) if the DFC control
gain satisfies the inequality

(−1)m
(

1 + K(i)C(i)
)

< 0, (10)

where m is the number of real Floquet multipliers (FMs) larger that
1 existing in the control-free system ẋ(i) = f(i)

(

x(i), 0
)

. By definition,

the limit cycle ξ (i)(t) is stable; therefore, m = 0 and the inequal-
ity (10) reduces to

(

K(i)C(i)
)

< −1. In other words, the DFC force

made the periodic orbit ξ (i)(t) unstable exactly at the point where

ε
(i)
eff flips its sign. Note that the odd-number limitation theorem does

not guarantee stability of ξ (i)(t) for the control gain value that vio-
lates (10); therefore, the violation of (10) is only necessary but not
sufficient condition for the stability of the periodic solution ξ (i)(t).

The main goal of this work is to present the control algorithm
based on the form of the DFC, which allows one to set negative
values of α while preserving the stability of the limit cycle. As a
consequence, the phase model (5) becomes valid having an oppo-

site sign of ε(i)eff in comparison with the natural coupling constant
ε. The main idea is based on Ref. 22 and schematically may be
explained by the following steps. We add an additional unstable
degree of freedom and couple it with the oscillator in such a way that
the periodic solution does not change the profile ξ (i)(t) but make it
unstable. Then, we add the DFC force that stabilizes the periodic
solution. Such stabilization is achieved for the values of the control
gain K(i), which give α < 0. The “bypass” of the odd-number lim-
itation theorem is achieved since the additional degree of freedom
adds a real Floquet multiplier with the value being larger than one,
and as a consequence, the theorem (10) gives an opposite outcome;
i.e., the limit cycle is unstable for

(

K(i)C(i)
)

> −1 and may be stable

only for
(

K(i)C(i)
)

< −1.

III. ONE OSCILLATOR UNDER DELAYED FEEDBACK

CONTROL SUPPLEMENTED BY AN UNSTABLE

DEGREE OF FREEDOM

The results presented in Sec. II are valid for any stable limit
cycle oscillators, governed by f(i), even with a different dimen-
sion for different indexes i, and the only main requirement is that
∣

∣T(i) − T(j)
∣

∣ ∼
∣

∣τ (i) − T(i)
∣

∣ ∼ ε should be small. In order to imple-
ment the goal formulated in Sec. II C, we can study only one
particular oscillator supplemented by an additional unstable degree
of freedom and affected by the DFC. Thus, in this section, we will
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drop the superscript i for all quantities as being the notation for
different oscillators and instead use it for different purposes.

By adding an additional degree of freedom, the previous single-
input single-output problem becomes the two-input two-output
problem and the control gain K becomes matrix K of the form of
2 × 2. To deal with it, we will use a similar technique as in Ref. 23;
i.e., we factorize the control matrix K = κK̃ into a scalar dimension-
less control gain κ and a control form K̃. To make the factorization
uniquely defined, we assume that the elements of K̃ are in the inter-
val K̃ij ∈ [−1, 1] and at least one of the elements is equal to −1 or
1. The scalar control gain κ is assumed to be positive, κ > 0, since
κ < 0 can be covered by reverting the sign of K̃. The equations
governing oscillator’s dynamics read

ẋ = f (x, r) , (11a)

ẇ = (λl + λns(t))w + κ
{

K̃21 [s(t − T)− s(t)]

+ K̃22 [w(t − T)− w(t)]
}

, (11b)

s(t) = g (x(t)) , (11c)

r(t) = w(t)+ κ
{

K̃11 [s(t − T)− s(t)]

+ K̃12 [w(t − T)− w(t)]
}

; (11d)

here, x stands for an n-dimensional state vector, w(t) is a new
dynamical variable representing an unstable degree of freedom, and
λl and λn are linear and non-linear contributions to the dynamics of
w(t), respectively.

Without the DFC (κ = 0), the (n + 1)-dimensional system
(11) possesses the periodic solution (xT(t), w(t)) = (ξT

(t + T), 0)
= (ξT

(t), 0). As it is shown in Appendix A, such a solution has the
first n FMs and the first n components of the PRC the same as in the
case of an n-dimensional stable oscillator without w(t). The last FM

µn+1 = exp

[

λlT + λn

∫ T

0

g (ξ(t)) dt

]

(12)

and the corresponding Floquet exponent (FE) 3n+1 = λl

+ λnT−1
∫ T

0
g (ξ(t)) dt.

The change of the control gain κ from zero leads to movement
of FMs. The aim of changing κ is to push the µn+1 into the unit
circle through trivial FM, while other FMs remain in this circle. As
a consequence, the system (11) will become stable. By appropriate
choice of λl and λn, it may be beneficial to set µn+1 very close to
trivial FM; i.e., µn+1 → 1 + 0 and 3n+1 → +0. The µn+1 closeness
to trivial FM would allow one to expect that it enters a unit circle
before other FMs go out of it. However, such a strategy may have
some difficulties as it is shown in the examples depicted in Fig. 1.

When the parameters λl, λn, and K̃ are set, the function
3n+1(κ) is well determined, and the derivative d3n+1(κ)/dκ

∣

∣

κ=0
indicates where does unstable FE move by slightly increasing κ .
From Fig. 1, one can see that in all three cases, the derivative
d3n+1(κ)/dκ

∣

∣

κ=0
is negative; therefore, one can think that by

setting-up small enough value of the unstable FE, 3n+1(0), we can
always achieve the stabilization. Unfortunately, that is not true due
to the fact that the derivative d3n+1(κ)/dκ

∣

∣

κ=0
depends on λl and λn

FIG. 1. Three examples of the dependence of the unstable FE vs the control
gain for the FitzHugh–Nagumo oscillator model. The model is described further in

Sec. IV A by Eqs. (44) and (46). In all cases, the matrix K̃ has all elements equal
to zero except the element tagged in the plot. The starting position of the unstable
FE3n+1(κ = 0) = 0.01 is assumed to be small. However, only the solid orange
line shows stabilization for the small κ , while the dashed blue and dashed–dotted
green lines remain unstable.

and as a consequence on the initial value of the unstable FE,3n+1(0).
Since we assume that 3n+1(0) is small, one can perform the expan-
sion of the derivative d3n+1(κ)/dκ

∣

∣

κ=0
in terms of 3n+1(0). In two

dimensional parameter space (λl; λn), there is a straight line giving
3n+1(0) = 0; thus, along the perpendicular direction of the line, one
can write

d3n+1(κ)

dκ

∣

∣

∣

∣

κ=0

= c0 + c13n+1(0)+ c23
2
n+1(0)+ · · · . (13)

Typically, the constant c0 = 0 (that is the case for the dashed blue
and dashed–dotted green lines of Fig. 1); thus,

d3n+1(κ)

dκ

∣

∣

∣

∣

κ=0

∼ O(3n+1(0)). (14)

As a consequence, the closer we put the 3n+1(0) to zero, the slower
it moves as κ increases from zero. On the other hand, for c0 6= 0, the
system (11) becomes stable for the small value of the control gain,
κ ∼ O(3n+1(0)). Further in this section, we will show that there are
two essential requirements for the control parameters, namely,

(i) The control form K̃ has non-zero element K̃21, while other
elements may be equal to zero.

(ii) The dynamics of w(t) has a non-zero non-linear part; λn 6= 0.

The fulfillment of the conditions (i) and (ii) (as, for example,
the solid orange line in Fig. 1) is necessary and sufficient in order
to achieve stabilization in the presence of3n+1(0) → +0. Note that
it does not mean that other matrix K̃ coefficients are useless in a
practical implementation of the control algorithm. As it is shown in
Sec. III E, the limit 3n+1(0) → +0 might lead to some difficulties.
Thus, the only aim of Sec. III is to show that theoretically, one can
always stabilize the system (11) by employing (i) and (ii). However,
in practical implementation, the requirements (i) and (ii) might be a
good starting point and, in principle, can be relaxed.

The logical structure of this section is organized as follows: in
Secs. III A and III B, we introduce general formalism related to a
proportional feedback and the delay feedback control schemes with-
out involving smallness of 3n+1(0). In Sec. III C, we reconsider the
results of Sec. III B in the presence of 3n+1(0) → +0 by showing
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that the conditions (i) and (ii) are necessary for the stabilization.
In Sec. III D, we present the sufficiency of the conditions (i) and
(ii), and Sec. III E is devoted to a summary and a discussion on the
limitations.

A. Relation between Floquet exponents and Floquet

modes for a system under proportional feedback and

delayed feedback control

Next, let us assume that we have fixed control form K̃ and we
increase the control gain κ . By changing κ , the FMs are moving. The
information on the dynamics of the FMs in a delayed feedback con-
trolled system (11) can be extracted from a similar system controlled
by the proportional feedback.24 The analog of the system (11), where
the DFC is replaced by proportional feedback control (PFC), reads

ẋ = f
(

x, w + 0
{

K̃11

[

g(ξ(t))− s(t)
]

+ K̃12 [−w(t)]
})

, (15a)

ẇ = (λl + λns(t))w + 0
{

K̃21

[

g(ξ(t))− s(t)
]

+ K̃22 [−w(t)]
}

,

(15b)

s(t) = g (x(t)) . (15c)

Here, 0 is the dimensionless PFC control gain. By introducing
notations for an n × n Jacobian matrix

A(t) = D1f (ξ(t), 0) , (16)

an n × 1 vector of the derivatives with respect to the input signal

p(t) = D2f (ξ(t), 0) , (17)

and an n × 1 vector of the derivatives with respect to the dynamical
variables

q(t) = ∇g(ξ(t)), (18)

one can write the evolution of small perturbation from the limit
cycle for both PFC system (15) and DFC system (11) as

(

δẋ

δẇ

)

=

(

A(t) p(t)

0T
n λl + λng(ξ(t))

)(

δx
δw

)

−

{

0, for PFC
κ , for DFC

}

(

K̃11p(t)q
T(t) K̃12p(t)

K̃21q
T(t) K̃22

)

·

[(

δx
δw

)

−

{

0, for PFC
1, for DFC

}(

δx(t − T)
δw(t − T)

)]

. (19)

Here, 0n is an n-dimensional column-vector filled with zeros.
Let us denote FEs of the DFC and PFC systems as 3D(κ)

and 3P(0) and the corresponding right Floquet modes as
uD(t, κ) and uP(t,0), respectively. The substitution of the form

(δxT(t), δw(t)) = exp
(

3{P,D}t
)

uT
{P,D}(t, {0, κ}) to Eq. (19) gives

u̇X +3XuX =

(

A(t) p(t)

0T
n λl + λng(ξ(t))

)

uX

−

{

0, for X = P

κ
(

1 − e−3XT
)

, for X = D

}

·

(

K̃11p(t)q
T(t) K̃12p(t)

K̃21q
T(t) K̃22

)

uX, with X ∈ {P, D} .

(20)

If both FEs are real (do not have imaginary parts), then one can
obtain following relations between Floquet modes, FEs, and control
gains of both systems:

uD(t, κ(0)) = uP(t,0), (21a)

3D(κ(0)) = 3P(0), (21b)

κ(0) =
0

1 − exp (−3P(0)T)
. (21c)

The last equations allow us to map the FE of the PFC system into the
FE in the DFC system and vice versa.

Note that Eq. (21) works only for the real FEs, or in other
words, for the positive FMs, µ > 0. For the negative FMs, µ < 0,
the FE is complex and has real part < (3) = ln |µ|/T and imaginary
part = (3) = i(π + 2πk)/T with any integer k; therefore, the rela-
tions are similar to (21). The only difference is that (21c) becomes
κ(0) = 0/

[

1 + exp(−<(3P(0))T)
]

. However, for the pair of com-
plex conjugate FMs, the relations between the DFC and PFC systems
are difficult to derive.

B. Trivial Floquet exponent

The DFC system is autonomous; thus, for all κ , it has trivial
Floquet exponent3D,1(κ) = 0 [here, we use subscript (·)1 to denote
the first FE]. By rewriting (21c) as 0(κ) = κ

[

1 − exp(−3D(κ)T)
]

,
one can see that the trivial branch 3D,1(κ) of the DFC system maps
into one point 3P,1(0 = 0) = 0 of the PFC system. For 0 6= 0, the
PFC system is non-autonomous; thus, in general, 3P,1(0) 6= 0. By
mapping the trivial branch 3P,1(0) segment near the point 0 = 0
into the DFC system, one can extract information on another (non-
trivial) branch of the FE, which crosses the stability point, 3D = 0.
Indeed, for 0 → 0, the first FE 3P,1(0) → 0; therefore, Eq. (21c)
might give a finite value

κ∗ = lim
0→0

κ(0) (22)

corresponding to a threshold control gain where some branch
3D(κ) crosses zero; i.e.,3D(κ

∗) = 0.
Let us analyze a particular example, the FitzHugh–Nagumo

oscillator model described in Sec. IV A by Eqs. (44) and (46). In
Fig. 2, the FEs of the PFC [panel (a)] and DFC [panel (b)] systems are
depicted. The parameters K̃, λl, and λn are chosen in such a way that
(i) and (ii) constraints are satisfied (for exact values, see the descrip-
tion of the figure). The trivial3P,1(0) and the unstable3P,n+1(0) FE
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FIG. 2. The dependence of the FEs on the control gain in the case of PFC [panel
(a)] and DFC [panel (b)] for the FitzHugh–Nagumo oscillator model. The control

form K̃ has non-zero element K21 = −1, and the linear and non-linear contri-
butions to the dynamics of the unstable degree of freedom are λl = 0.595 and
λn = −0.25. Blue solid and red dashed lines in panel (a) represent the trivial
FE and the unstable FE, respectively. Both branches merge and a pair of com-
plex conjugate FEs appear, which is depicted by a green dashed–dotted line.
The unstable FE of panel (b) was obtained by mapping the trivial and unstable
branches of the PFC system to the DFC system.

branches of the PFC system using (21) are mapped to one unstable
FE branch3D,n+1(κ) of the DFC system.

The point κ∗ where 3D,n+1(κ) crosses the zero can be esti-
mated from the expansion of the trivial branch 3P,1(0) and the
corresponding right Floquet mode uP,1(t,0) near 0 = 0,

3P,1(0) = 0 +3′
P,1(0)0 + O(02), (23)

uP,1(t,0) = u
(0)
P,1(t)+ u

(1)
P,1(t)0 + O(02). (24)

Note that further, for the sake of simplicity, we will skip subscript
(·)P and superscript (·)(0) for the zeroth-order expansion term of the

Floquet modes u
(0)
P,i (t) ≡ ui(t). The zeroth-order term is known ana-

lytically, u1(t) = (ξ̇
T
(t), 0)

T

. By substituting (23) and (24) into (20)
and collecting O(0) order terms, we get

u̇
(1)
P,1(t) =

(

A(t) p(t)

0T
n λl + λng(ξ(t))

)

u
(1)
P,1(t)

−

[(

K̃11p(t)q
T(t) K̃12p(t)

K̃21q
T(t) K̃22

)

+3′
P,1(0)In+1

]

(

ξ̇(t)
0

)

,

(25)

where In+1 stands for an (n + 1)× (n + 1) identity matrix. The last
equation allows us to find the expansion coefficient 3′

P,1(0). To do
so, one should do the following three steps: first, multiply Eq. (25)
from the left hand side by the PRC vT

1 (t) (note that the PRC is the

first left Floquet mode, and the left and right Floquet modes are bi-
orthogonal to each other); second, multiply differential equation for

the PRC (A7) by u
(1)
P,1(t) from the right hand side; and third, sum

results of the first and the second steps. As a result, one gets

d

dt

(

vT
1 (t) · u

(1)
P,1(t)

)

= −3′
P,1(0)− vT

1 (t)

(

K̃11p(t)q
T(t) K̃12p(t)

K̃21q
T(t) K̃22

)

(

ξ̇(t)
0

)

. (26)

By integrating the last equation on the interval [0, T], one can see
that the derivative 3′

P,1(0) can be written as a linear combination

of the control matrix coefficients K̃ij (for further simplifications, we
multiply the derivative by the period)

3′
P,1(0)T = −

(

K̃11C11 + K̃12C12 + K̃21C21 + K̃22C22

)

, (27)

where

C11 =

∫ T

0

vT
1,1:n(t)p(t)q

T(t)ξ̇(t)dt, (28a)

C12 = 0, (28b)

C21 =

∫ T

0

v1,n+1(t)q
T(t)ξ̇(t)dt, (28c)

C22 = 0. (28d)

Here, v1,1:n(t) denotes the vector constructed from the vector v1(t)
by dropping the (n + 1)th component. Note that the coefficient
(28a) is exactly the same coefficient C(i) presented in Sec. II C [cf.
the definition (8)]. The derivative 3′

P,1(0)T is inverse to κ∗. Indeed,
substituting (23) to (22), one obtains

κ∗ =
1

3′
P,1(0)T

= −
1

K̃11C11 + K̃21C21

. (29)

C. Trivial Floquet exponent in the presence of

3D,n+1(0)→ +0

Let us recall that our goal is put 3D,n+1(0) close to
zero and obtain the stabilization at the threshold control gain
κ∗ ∼ O(3D,n+1(0)). Up to now, we did not use the property
3D,n+1(0) → +0. As it is shown in Appendix A, v1,1:n(t) is the PRC
of the oscillator without the unstable degree of freedom w(t); thus,
C11 does not depend on 3D,n+1(0); i.e., C11 ∼ O(1). Therefore, it
turns out that the only potentially successful choice of the control
form is K̃21 = ±1.

Using (A11), the (n + 1)th component of the PRC v1,n+1(t) in
the limit3D,n+1(0) → +0 reads

v1,n+1(t) = −
exp

(

−λlt − λn

∫ t

0
g(ξ(t′))dt′

)

3D,n+1(0)T

×

∫ T

0

vT
1,1:n(t

′)p(t′) exp

(

λlt
′ + λn

∫ t′

0

g(ξ(t′′))dt′′

)

dt′.

(30)
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Note that the last expression, strictly speaking, is not periodic; how-
ever, the order of non-periodicity

[

v1,n+1(0)− v1,n+1(T)
]

∼ O(1),
while the order of v1,n+1(t) itself is O(1/3D,n+1(0)). To finalize our
findings, we substitute (30) to (28c) and then to (29) and obtain

κ∗ =
3D,n+1(0)T

K̃21I1I2

, (31)

where the integrals read

I1 =

[∫ T

0

qT(t)ξ̇(t) exp

(

−λlt − λn

∫ t

0

g(ξ(t′))dt′
)

dt

]

, (32)

I2 =

[∫ T

0

vT
1,1:n(t)p(t) exp

(

λlt + λn

∫ t

0

g(ξ(t′))dt′
)

dt

]

. (33)

As one can see, κ∗ ∼ O(3D,n+1(0)) if both integrals I1 and I2 have
a non-zero zeroth-order term for an expansion with respect to
3D,n+1(0). If λn = 0, then λl = 3D,n+1(0), and the integral I1 up to
the order O(1) gives

I1 =

∫ T

0

qT(t)ξ̇(t)dt =

∮

ξ(t)

[

∇g(x)
]T

· dx

= g(ξ(0))− g(ξ(T)) = 0. (34)

Therefore, in order to have small threshold control gain κ∗, one
should satisfy the constraints (i) and (ii). In general, both integrals
I1 and I2 are non-zero. However, for some cases, one of the inte-
grals may be equal to zero for any parameter values λn and λl that
give3D,n+1(0) → +0. As an example, the problematic situation may

appear if
∫ T

0
g(ξ(t))dt = 0. In Sec. IV B, we analyze this case on the

Landau–Stuart oscillator and show how to overcome this restriction.
The expression (31), derived by taking into account the con-

ditions (i) and (ii), shows that some branch of FE passes 3 = 0,
and it happens at the small control gain. However, we do not know
whether this passing happens for the unstable branch of FE or for
some other branch of FE. Therefore, up to now, we show that (i)
and (ii) are necessary but not sufficient conditions in order to sta-
bilize the limit cycle with small κ . In order to prove the sufficiency
of both conditions, one should additionally analyze the unstable FE
3D,n+1(κ) near κ → 0.

D. Unstable Floquet exponent in the presence of

3D,n+1(0)→+0

The information on the derivative d3D,n+1(κ)/dκ near κ = 0
can be extracted from the unstable FE of the PFC system 3P,n+1(0)

near 0 = 0. According to (21), for the unstable FE,

3D,n+1(κ) = 3P,n+1

(

κ

[

1 −
1

exp(3D,n+1(κ)T)

])

. (35)

Moreover, unlike the case of the trivial FE, the points κ → 0 map to
0 → 0. Differentiation of (35) with respect to κ gives

3′
D,n+1(0) =

[

1 −
1

exp(3D,n+1(0)T)

]

3′
P,n+1(0), (36)

or in the limit3D,n+1(0) → +0, it simplifies to

3′
D,n+1(0) = T3D,n+1(0)3

′
P,n+1(0). (37)

The last equation relates derivatives of FEs in the DFC and PFC sys-
tems. If the right hand side of (37) is not small [of order of ∼ O(1)],
then the stabilization may be achieved for a small control gain κ .
Moreover, if the unstable FE’s branch of the DFC system contains
the trivial and unstable branches of the PFC system (as it is in the
example of Fig. 2 where two branches of the PFC system transform
into one branch of the DFC system), then the threshold control gain
(31) is exactly the point where the unstable FE of the DFC system
crosses zero. In such a situation, the derivative3′

D,n+1(0) can also be
calculated as a finite difference [see Fig. 2(b)],

3′
D,n+1(0) = −

3D,n+1(0)

κ∗
. (38)

The main goal in this subsection is to show that the right hand side
of Eq. (37) is of the order of O(1) and to prove that (38) is valid
if both conditions (i) and (ii) are satisfied. After these proofs, one
can claim that the conditions (i) and (ii) will become necessary and
sufficient to stabilize the limit cycle.

Let us evaluate the derivative 3′
P,n+1(0), which is on the right

hand side of Eq. (37). Similar to the case of Eqs. (23) and (24), we
perform an expansion with respect to the control gain 0

3P,n+1(0) = 3P,n+1(0)+3′
P,n+1(0)0 + O(02), (39)

uP,n+1(t,0) = un+1(t)+ u
(1)
P,n+1(t)0 + O(02). (40)

Next, by performing analogous steps as were done after Eq. (24), we
will end up with the linear form

3′
P,n+1(0)T = −

(

K̃11B11 + K̃12B12 + K̃21B21 + K̃22B22

)

, (41)

where the coefficients Bij read

B11 =

∫ T

0

vT
n+1,1:n(t)p(t)q

T(t)un+1,1:n(t)dt, (42a)

B12 =

∫ T

0

vT
n+1,1:n(t)p(t)un+1,n+1(t)dt, (42b)

B21 =

∫ T

0

vn+1,n+1(t)q
T(t)un+1,1:n(t)dt, (42c)

B22 =

∫ T

0

vn+1,n+1(t)un+1,n+1(t)dt. (42d)

As it is shown in Appendix B, vn+1,1:n(t) = 0 and vn+1,n+1(t)un+1,n+1

(t) = 1. Therefore, B11 = B12 = 0 and B22 = T. Again, one can con-
clude that the only possibility to have3′

P,n+1(0) ∼ O(3−1
D,n+1(0)) and

as a consequence to have the right hand side of (37) order of O(1) is
to set non-zero coefficient K̃21.

Let us estimate the coefficient B21 in the limit3D,n+1(0) → +0.
As it is shown in Appendix C for the given limit, the right Floquet
mode un+1,1:n(t) is defined by Eq. (C10), while vn+1,n+1(t) accord-

ing to Eq. (B7) reads as vn+1,n+1(t) = exp
[

−λlt − λn

∫ t

0
g (ξ(t′)) dt′

]

.

Thus, B21 = I1I2/
[

3D,n+1(0)T
]

, and by substituting Eq. (41) into

Eq. (37), one can see that 3′
D,n+1(0) = −K̃21I1I2/T is of the order

of O(1) if both integrals I1 and I2 are non-zero. Additionally, using
the expression (31), one can conclude that Eq. (38) holds.
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E. Summary and limitations

Let us summarize Sec. III. The stable limit cycle oscillator pos-
sessing single input and single output can be destabilized by the
unstable degree of freedom and then stabilized by the DFC force.
The equations for the oscillator under control read

ẋ = f (x, r) , (43a)

ẇ = (λl + λns(t))w + κK̃21 [s(t − τ)− s(t)] , (43b)

s(t) = g (x(t)) , (43c)

r(t) = w(t). (43d)

Here, the time delay τ = T and K̃21 = ±1 where, for the conve-
nience, the appropriate sign can be chosen in such a way that the
threshold control gain κ∗ is always positive. The linear λl and non-
linear λn contributions to the unstable degree of freedom can be
adjusted in such a way that the induced unstable FE 3n+1 will be
close to zero (a weak instability). In order to have stable system (43),
one should have non-zero integrals (32) and (33), and as a con-
sequence, λn should be non-zero. The stability appears when the
control gain κ is slightly above to the threshold value κ∗ given by
(31). Note that a further increase of κ does not guarantee the stabil-
ity of the limit cycle. As an example, see Fig. 3, where for κ > κ∗ ≈

2.3 × 10−4, the limit cycle becomes stable, but for κ > 12.5 × 10−4,
the limit cycle again loses its stability.

The main consequence of the control in the system (43) is that
for the case of weakly coupled oscillators, the phase ψ(t) of the
controlled oscillator behaves in such a way like the coupling con-
stant ε will have an opposite sign, εeff = εα

(

κK̃21C21

)

[cf. Eq. (6)]
with negative α and the constant C21 = −I1I2/(3n+1T). One of the
prominent examples is when κ = 2κ∗. Then, the factor α = −1,
and as a consequence, εeff = −ε. If the delayed term s(t − τ) in
Eq. (43b) has time delay τ close but not equal to the natural oscil-
lator’s period T, then, according to Eq. (7), the natural frequency
of the phase model changes to the effective frequency ωeff = ω

+ (T − τ)�
[

1 − α
(

κK̃21C21

)]

/T.

FIG. 3. The dependence of the FMs on the control gain in the case of DFC for

the FitzHugh–Nagumo oscillator model. The control form K̃ has non-zero ele-

ment K̃21 = −1, and the linear and non-linear contributions to the dynamics
of the unstable degree of freedom are λl = 0.595 and λn = −0.25. The red
dashed line calculated from Eq. (31) is close to the numerically obtained criti-
cal control gain κ∗ ≈ 2.3 × 10−4. Note that the unstable branch of the FM can
be reproduced from the unstable branch of the FE in Fig. 2(b).

The control method (43) has two hidden limitations. The first
limitation is related to the two small parameters ε and 3n+1 and an
interference between them. The phase reduction theory is derived
in the limit ε → 0, where ε is an inter-oscillatory coupling con-
stant [see Eq. (1)], while the results of this section are derived for
3n+1 → +0. In order to have a valid phase dynamics governed by
Eq. (5), an interference between these two small values should be
avoided. In particular, one should set the unstable FE 3n+1 larger
than the inter-oscillatory coupling constant ε. Otherwise, the phase
reduction will no longer work. As it will be shown below in Sec. IV,
in order to avoid such interference, we chose the unstable FE 3n+1

about 5 times higher than ε.
The second limitation is related to an additional periodic orbit

[not equal to the analyzed limit cycle (xT(t), w(t)) = (ξT
(t), 0)]

induced due to the unstable degree of freedom and the DFC force.
The profile of the additional periodic orbit is derived in Appendix D.
One can think that it is convenient to choose the control gain κ
just slightly above the threshold gain κ∗ since the limit cycle is cer-
tainly stable and the effective inter-oscillatory coupling constant εeff

is highly negative. However, the additional periodic orbit restricts
the choice of κ being close to κ∗. By increasing κ from zero, the
control force does not change the profile and period of the limit
cycle (ξT

(t), 0), while the additional periodic orbit changes its pro-
file and period. At the point κ = κ∗, two orbits collide (transcritical
bifurcation of periodic orbits) and interchange their stability. The
additional orbit is stable before κ achieves κ∗ and is unstable after κ
increases further. Thus, for κ → κ∗ + 0 in the phase space near the
stable limit cycle (ξT

(t), 0), there is an unstable orbit that repels solu-
tions; therefore, the basin of attraction of the limit cycle (ξT

(t), 0)
becomes very narrow. Once the oscillator (43) is coupled to other
oscillators, it receives perturbations, which can push out the state
from the basin of attraction. Such a scenario leads to uncontrol-
lable growth of the variable w(t), indicating that the controller is no
longer relevant. In order to avoid such a scenario, one should set the
control gain κ far away from the threshold gain κ∗. Additionally, it
potentially prevents from being3D,n+1(κ) close to zero.

IV. SWITCHING BETWEEN IN-PHASE AND

ANTI-PHASE SYNCHRONIZATION FOR TWO WEAKLY

COUPLED OSCILLATORS

The near-identical two limit cycle oscillators coupled attrac-
tively (repulsively) with a large enough coupling constant demon-
strate in-phase (anti-phase) synchronization. By applying the unsta-
ble DFC to both oscillators, one can reverse the sign of the coupling
constant and switch between the in-phase and anti-phase syn-
chronous regimes. In this section, we present a numerical demon-
stration of this switching on two different oscillator models, namely,
FitzHugh–Nagumo and Landau–Stuart.

A. Numerical demonstration on two

FitzHugh–Nagumo neurons

In the first demonstration, we will use FitzHugh–Nagumo
oscillators. The dynamics of the ith oscillator is described by the
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following vector field:

f(i) (x, r) =

[

x1 − x3
1/3 − x2 + 0.5

ε(i) [(1 + r)x1 + 0.7 − 0.8x2]

]

. (44)

Here, xj denotes the jth component of the vector x. The oscillators
differ by parameter ε(i), which also defines the natural frequency.
The coupling function G(ij) ≡ G is set through the first dynamical
variables by a non-trivial form

G(y, x) =

[

y1/
(

2 + y2

)

− x1/ (2 + x2)

0

]

. (45)

We assume that the measured scalar signal has the form

s(t) = g(x(t)) = x2
1(t)+ x2(t) (46)

consisting both variables of the system. Such unusual forms are
chosen in order to demonstrate the universality of the proposed
algorithm.

First, we investigate the effect of the DFC force for the single
oscillator with the additional unstable degree of freedom. For that
purpose in Fig. 3, we plot dependence of the absolute value of FMs
on the control gain κ . Here, we set the intrinsic system parame-
ter ε = 0.08 and parameters of the control λl = 0.595, λn = −0.25,
K̃21 = −1. At κ = 0, the unstable FM is |µ3| ≈ 1.48 (FE is33 ≈ 0.01
and oscillator period T ≈ 39.4744). By increasing κ , |µ3| decreases,
and at κ = κ∗ ≈ 2.3 × 10−4, it becomes equal to one. The oscillator
remains stable for interval κ ∈ [2.3, 12.5] × 10−4.

Second, we couple two neurons (44) with ε(i) = 0.08
+ [1, −1] × 10−4. The natural periods of oscillators are T(1)

≈ 39.4376 and T(2) ≈ 39.5115. When coupling strength is set to
ε = 2 × 10−3, neurons are nearly in-phase synchronized; see
dynamics of the first variables of neurons in Fig. 4(a). When
ε = −2 × 10−3 neurons are in an anti-phase synchronization
regime, we apply control algorithm (43) for both neurons, with
λl and λn values used in Fig. 3, time delay τ (i) = T(i) and
κ = 2κ∗ = 4.6 × 10−4. The choice of κ determines that εeff = −ε.
In Fig. 4(b), the dynamics of oscillators is plotted after transitional
processes when ε = 2 × 10−3 and the system is under control. We
see that neurons are in nearly anti-phase synchronization. We cal-
culate the time distances between two neighboring maximums of
the first dynamical variables and call this quantity “local” period

T(i)loc. For example, in Fig. 4(a), the blue curve achieves maxima at
t1 ≈ 19 and t2 ≈ 59. Thus, at the time moment t1, the “local” period

T(i)loc(t1) = t2 − t1. The “local” periods are plotted as discrete sym-
bols, but on a broad time interval, they form a continuous curve.

When the system is in the frequency-locking regime, both T(i)loc coin-
cide and form a horizontal line. In Fig. 4(c), we plot “local” periods
for a control-free system when 0 < t < 104 and with control being
turned on at t > 104. We see that after transitional processes, both

T(i)loc become equal and coincide with the synchronization period
obtained from the phase model (dashed line). The same behavior is
seen in Fig. 4(d), where the control-free system for ε = −2 × 10−3

was in an anti-phase synchronization regime, and after the control
is turned on at t = 104, the system becomes in-phase synchronized.

FIG. 4. Effect of DFC for the two coupled FitzHugh–Nagumo neurons. In (a)–(c),
the coupling strength is ε = 2 × 10−3 and in (d) ε = −2 × 10−3. (a) Shows
dynamics of the first dynamical variables of oscillators in the control-free case; (b)
the same as in (a), but the system is under control; and (c) and (d) “local” periods
for the control-free case (before a vertical black line) and under control (after a
vertical black line). The horizontal solid lines represent intrinsic periods of oscilla-
tors, T(1) and T(2), while the horizontal dashed line represents a synchronization
period obtained from the phase model. Parameters: ε(i) = 0.08 + δεi × 10−4

where δε = [1,−1]T , λl = 0.595, λn = −0.25, K̃21 = −1, κ = 4.6 × 10−4,
τ (i) = T(i).

B. Numerical demonstration on two Landau–Stuart

oscillators

The dynamics of the ith Landau–Stuart oscillator is described
by the following vector field:

f(i) (x, r) =

[

x1

(

1 − x2
1 − x2

2

)

−�(i)x2

x2

(

1 − x2
1 − x2

2

)

+�(i)x1 + r

]

. (47)

Here, xj denotes the jth component of the vector x. The parame-
ter �(i) is a natural frequency of the ith oscillator. The coupling is
realized through the first dynamical variables,

G(y, x) =

[

y1 − x1

0

]

. (48)

We assume that only the first component of the oscillator is available
for the measurement,

s(t) = g(x(t)) = x1(t). (49)

Due to simplicity of the Landau–Stuart model, the solution
of a single oscillator with frequency � can be written as
ξ(t) = [cos(�t), sin(�t)]T and the PRC is v1,1:2(t) = �−1[− sin(�t),
cos(�t)]T. Let us set � = 1. According to (49), we are measuring
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FIG. 5. Effect of the DFC for the coupled Landau–Stuart oscillators. The solid
line is calculated directly from the models [Eq.(47)], while the dashed line is
obtained from the phase models. Parameters:�(1) = 1,�(2) = 1.001, ε = 5 ×

10−3, λl = −0.3, λn = −1.6 (33 = 0.1, µ3 = 1.87), K̃21 = −1, κ = 0.14,
τ (i) = T(i). The control is turned on at t = 2000.

the first dynamical variable; therefore, the unstable FE3D,3(0) = λl

does not depend on λn since the integral
∫ T

0
g (ξ(t)) dt = 0. This

means that if we want to achieve 3D,3(0) → +0, we have also to
take λl → +0. As a consequence, the integral I2 of Eq. (33) becomes
∫ 2π

0
cos(t) exp(λn sin(t))dt = 0 for any value of λn. In other words,

the critical coupling κ∗ becomes infinite. Note that this problem is
unusual and appears because the Landau–Stuart oscillator possesses
high order symmetries, and the single-input variable r affects the
second dynamical variable. For example, if r will be added to the
first component of Eq. (47), the problem will no longer appear.

The problem can be overcome by modifying Eq. (43b) by the
following scheme:

ẇ = (λl + λnstr(t))w + κK̃21 [s(t − T)− s(t)] . (50)

Here, str(t) is transformed signal s(t). Nonlinear transformation may
prevent annihilation of the integral I2. In our case, the signal s(t)
varies in an interval [−1; 1]. The simplest nonlinear transformation
that also varies in this interval is the following quadratic function:

str(t) = 0.5s2(t)+ s(t)− 0.5. (51)

To demonstrate the effect of the modified version of the algorithm
on the Landau–Stuart model, we estimate oscillators phaseφ(t) as an
argument of a complex number x1(t)+ ix2(t) = ρ(t)eiφ(t). In Fig. 5,
we show how the phase difference between two oscillators evolves in
a control-free case t < 2000 and under control t > 2000. We see that
without control, the system was near the in-phase synchronization
regime, and after the control is turned on, the oscillators reach a near
anti-phase synchronization regime. The time delay τ (i) = T(i) and
the control gain κ were set in such a way that the effective coupling
strength εeff = −ε.

V. NON-INVASIVE CONTROLLER TO STABILIZE AN

UNSTABLE PHASE DIFFERENCE OF TWO

HETEROGENEOUS OSCILLATORS

In Sec. IV, we show the possibility of the unstable delayed
feedback controller to achieve the anti-phase or in-phase synchro-
nization regime when the control force is invasive. To be more
precise, the delay times τ (i) are chosen to be equal to the natural peri-
ods T(i) of the oscillators, while the achieved synchronous regime has
its own synchronization period, which, in general, differs from T(i)

by ε order quantity. It means that
[

s(i)(t − T(i))− s(i)(t)
]

∼ O(ε),
and therefore, the control force r(t) = w(t) is ε-invasive. If two oscil-
lators are coupled strongly enough such that in the control-free
regime they are synchronized (frequency locking) and have some
phase difference, then, according to phase reduction, there should
be another phase difference for which two oscillators are also syn-
chronized. However, this phase difference is unstable. The goal of
this section is to show that the unstable DFC is able to stabilize the
unstable phase difference when this phase difference is not known a
priori. Moreover, it can be done by the control force for which the
O(ε) order term vanishes. Therefore, we refer to such controller as
non-invasive. Although O(εj) order terms with j ≥ 2 do not neces-
sary vanish, one should take into account that all consequences of
the conventional phase reduction are valid only up to O(ε) order,
and therefore, the existence of this unstable phase difference can be
proved only up to O(ε).

Let us start with two weakly coupled control-free heteroge-
neous limit cycle oscillators,

ẋ(1) = f(1)
(

x(1)
)

+ εG(12)
(

x(2), x(1)
)

, (52a)

ẋ(2) = f(2)
(

x(2)
)

+ εG(21)
(

x(1), x(2)
)

. (52b)

Here, both vector fields f(1) and f(2), in general, can be dissimilar and
even can have different dimensions. The only requirement is that the
difference of the natural periods T(1) − T(2) should be of the order of
ε. By applying phase reduction, in the reference frame rotating with
the “central” frequency� = 2π/T, the phase model reads

ψ̇ (1) = ω(1) + εH(12)
(

ψ (2) − ψ (1)
)

, (53a)

ψ̇ (2) = ω(2) + εH(21)
(

ψ (1) − ψ (2)
)

. (53b)

Here, H(ij) is defined by Eq. (3). We assume that ε is large
enough such that the phase model (53) possesses a frequency-
locking solution. Therefore, the phase difference1ψ = ψ (2) − ψ (1)

is governed by

d

dt
1ψ = ω(2) − ω(1) + εh (1ψ) , (54)

where

h (1ψ) = H(21) (−1ψ)− H(12) (1ψ) (55)

should have at least one stable fixed point 1ψ = 1ψ∗
s and one

unstable fixed point 1ψ = 1ψ∗
u . Both points give the vanishing

right hand side of Eq. (54),

h
(

1ψ∗
{s,u}

)

=
ω(1) − ω(2)

ε
, (56)

while derivatives of the right hand side of Eq. (54) with respect to
1ψ satisfy

εh′
(

1ψ∗
s

)

< 0, (57a)

εh′
(

1ψ∗
u

)

> 0. (57b)

If the system (53) is in the fixed point 1ψ∗
u , both oscillators oscil-

late with the synchronization period Tu. It can be obtained by
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substituting1ψ∗
u into Eq (53a) or (53b),

Tu = T(1)
(

1 −
ε

�
H(12)

(

1ψ∗
u

)

)

= T(2)
(

1 −
ε

�
H(21)

(

−1ψ∗
u

)

)

. (58)

Our aim is to use unstable DFC for both oscillators with the
time delays τ (1) = τ (2) = Tu such that 1ψ∗

u becomes a stable fixed
point. Since at that point, the output of the oscillator s(i) (t + Tu)

= s(i) (t)+ O(ε2), the DFC force and the unstable degree of freedom
w vanish at the order O(ε).

Now, let us analyze the same two coupled heterogeneous oscil-
lators (52), but under the unstable DFC,

ẋ(1) = f(1)
(

x(1), r(1)
)

+ εG(12)
(

x(2), x(1)
)

, (59a)

ẋ(2) = f(2)
(

x(2), r(2)
)

+ εG(21)
(

x(1), x(2)
)

, (59b)

where the single inputs r(1) and r(2) are constructed with respect
to described algorithm (43). We assume that both time delays τ (1)

= τ (2) = Tu and the control gains κ (1) and κ (2) are chosen in such a
way that α(1) and α(2) are negative. It is convenient to set α(1) = α(2);
however, in a typical experimental setup due to the heterogeneity,
it can be difficult to achieve. Therefore, we additionally assume that
α(1) = α and α(2) = α +1α, where 1α is small (the smallness will
be defined later). By performing the same steps, as in derivation of
Eq. (53), one gets

ψ̇ (1) = ω(1) +�
Tu − T(1)

T
[α − 1] + εαH(12)

(

ψ (2) − ψ (1)
)

, (60a)

ψ̇ (2) = ω(2) +�
Tu − T(2)

T
[α +1α − 1]

+ ε [α +1α] H(21)
(

ψ (1) − ψ (2)
)

. (60b)

By using Eq. (58), given equations become

ψ̇ (1) = ω(1) + εH(12)
(

1ψ∗
u

)

[1 − α] + εαH(12) (1ψ) , (61a)

ψ̇ (2) = ω(2) + εH(21)
(

−1ψ∗
u

)

[1 − α −1α]

+ ε [α +1α] H(21) (−1ψ) . (61b)

By using Eqs. (55) and (56), one can derive the dynamics for the
phase difference1ψ ,

d

dt
1ψ = α

[

ω(2) − ω(1) + εh (1ψ)
]

+ ε1α
{

H(21) (−1ψ)− H(21)
(

−1ψ∗
u

)}

. (62)

From Eq. (62), one can see that it possesses the fixed point at 1ψ
= 1ψ∗

u , and the stability of such a point is fulfilled if the inequality

αεh′
(

1ψ∗
u

)

− ε1α
dH(21)(χ)

dχ

∣

∣

∣

∣

χ=−1ψ∗
u

< 0 (63)

holds. The first term is always negative due to the inequality (57b).
If 1α is small enough such that the second term does not damage
the inequality (63), we end up with stabilization of the fixed point
1ψ∗

u . Interestingly, for the case of 1α = 0, Eq. (62) resembles the
control-free evolution of the phase difference governed by Eq. (54)
with reversed time flow t → −t and that is the reason of flipping the
stability of both fixed points.

We can conclude that the provided unstable DFC scheme is
able to stabilize the unstable phase difference 1ψ∗

u , which exists in
the phase model (54), and such stabilization is achieved by the non-
invasive control force. In Appendix E, we show that the control force
expanded in the powers of ε demonstrates the non-invasiveness up
to O

(

ε2
)

. Our algorithm requires some sophisticated setup of the

time delays. In particular, the time delays should be set τ (1) = τ (2)

= Tu, while Tu together with 1ψ∗
u and h(·) is assumed to be

unknown. However, the fact of the non-invasiveness of the control
force at the point τ (1,2) = Tu and invasiveness at the point τ (1,2) 6= Tu

can be exploited to set up the time delays. For example, in Sec. V A,
we employ the adaptive version of the DFC scheme where the time
delays are slowly changed in time in such a way that the control force
is minimized.

For the typical situation, when two oscillators are near-identical
with identical couplings G(12)

(

x, y
)

= G(21)
(

x, y
)

= G
(

x, y
)

and

small enough dissimilarity of the frequencies
(

ω(2) − ω(1)
)

/ε → 0,
the stable and unstable fixed points satisfy1ψ∗

s −1ψ∗
u ≈ π . A sim-

ilar situation is analyzed in so-called equivariant DFC25–27 where
N coupled identical units can possess an unstable spatiotemporal
synchronization pattern, and such a pattern can be stabilized by
the non-invasive control force of the form s(n)(t − T/N)− s(n+1)(t).
For the case of N = 2, the vanishing control force s(1)(t − T/2)
− s(2)(t) = 0 means that the anti-phase solution is stabilized; there-
fore, 1ψ∗

s −1ψ∗
u = π . The equivariant DFC and the provided

unstable DFC pursue similar goals; therefore, it is interesting to
discuss the differences between both algorithms. The case of equiv-
ariant DFC works for the symmetrical vector fields f(i), which should
be identical for all units, i.e., f(i) = f(j), and imposes symmetric
restrictions on the coupling function G. On the other hand, the
coupling strength ε is not necessarily small, and the control force
is purely non-invasive. However, in our case, the functions f(i) and
G(ij) are arbitrary and 1ψ∗

s −1ψ∗
u is not necessary equal to π , but

one should have small ε and non-invasiveness of the control force
achieved up to the order O(ε).

Another algorithm, which proposes similar goals as the pro-
vided unstable DFC algorithm, is called synchronization engi-
neering and is realized experimentally in oscillatory chemical
reactions.28–30 The synchronization engineering methodology allows
one to set up the desirable coupling function, h(1ψ), by apply-
ing a polynomial time-delayed feedback control. Thus, in such a
case, an any-phase synchronization of the two oscillators can be
achieved. However, the main difference of the provided algorithm
and the synchronization engineering is that here, we assume that
the inter-oscillatory couplings, G(ij)(·, ·), naturally exist and cannot
be dismissed, while in Refs. 28–30, it is assumed that G(ij)(·, ·) = 0
and the coupling function, h(1ψ), appears purely as a consequence
of control signals. Therefore, we can stabilize the naturally exist-
ing unstable fixed point 1ψ = 1ψ∗

u with the non-invasive control
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force, while the synchronization engineering setup requires invasive
control.

A. Numerical demonstration of synchronization for

two heterogeneous oscillators at the unstable phase

difference 1ψ*u

In this subsection, we present a numerical demonstration
of the stabilization of the unstable phase difference 1ψ∗

u by
the non-invasive control force. We picked two different oscilla-
tors, namely, FitzHugh–Nagumo (FHN) (denoted by index i = 1)
and Landau–Stuart (LS) (denoted by index i = 2). The uncou-
pled FHN oscillator is described by the vector field (44) with
the parameter ε(1) ≡ ε = 0.08. It gives oscillations with the period
T(1) = 39.474 415. The second uncoupled oscillator is described by
the vector field

f(2) (x, r) =

[

x1

(

1 − x2
1 − x2

2

)

−�(2)x2 + r

x2

(

1 − x2
1 − x2

2

)

+�(2)x1

]

, (64)

which differs from Eq. (47) by a place where the input vari-
able r is attached. In order to satisfy weak coupling requirement
|T(1) − T(2)| ∼ ε, we choose the natural frequency of the LS oscil-
lator�(2) = 2π/T(1) − 10−5 ≈ 0.159 161.

Two coupled oscillators controlled by the unstable DFC are
described by the following equations (for the index i = 1, the index
j = 2, and vice versa):

ẋ(i) = f(i)
(

x(i), r(i)
)

+ εG(ij)
(

x(j), x(i)
)

, (65a)

ẇ(i) =
(

λ
(i)
l + λ(i)n s(i)(t)

)

w(i) + κ (i)K̃(i)21

[

s(i)(t − τ(t))− s(i)(t)
]

,

(65b)

s(i)(t) = g(i)
(

x(i)(t)
)

, (65c)

r(i)(t) = w(i)(t). (65d)

Note that here, the time delay τ(t) is a dynamical variable that slowly
depends on time as it will be described below. We set the following
forms of the inter-oscillatory couplings:

G(12)(y, x) =

[

(y2
2 − y1)− (x2

2 − x1)

0

]

(66)

and

G(21)(x, y) =
1

5

[

x1 − y1

0

]

. (67)

The coupling constant ε = 1.5 × 10−4 is high enough such that
without control (r(1) = r(2) = 0), the coupled oscillators (65) are
in the frequency-locking regime. It can be seen from the function
h(1ψ) defined by Eq. (55) and plotted in Fig. 6.

The single-output functions are set to

s(1) = g(1)(x) = x2
1 + x2 (68)

FIG. 6. Numerically calculated function h(1ψ) that defines the dynamics of the
phase difference1ψ according to Eq. (54). A horizontal straight line represents
the value of the right hand side of Eq. (56). An asterisk and an open circle repre-
sent the stable1ψ∗

s and the unstable1ψ
∗
u fixed points, respectively. As one can

see, 1ψ∗
s −1ψ∗

u 6= π is non-standard due to heterogeneity of the oscillators

and the complex inter-oscillatory couplings G(ij).

and

s(2) = g(2)(x) = x1. (69)

The parameters of the DFC controller are set to the follow-

ing values:
[

λ
(1)
l , λ(2)l

]

= [0.595, 0.01],
[

λ(1)n , λ(2)n

]

= [−0.25, −0.2],

K̃(1)21 = K̃(2)21 = −1, and
[

κ (1), κ (2)
]

= [4.6 × 10−4, 0.88 × 10−3] such

that both α(1) = α(2) = −1. The control scheme (65) becomes non-
invasive when the time delay is equal to Tu. However, Tu is assumed
to be unknown; therefore, we run the adaptive DFC algorithm31,32 to
set the time delay τ(t) at the value Tu by minimizing the square of the

difference W(1)(t) =
[

s(1)(t − τ(t))− s(1)(t)
]2

. Note that the adap-
tive algorithm in Ref. 31 is derived inaccurately. In particular, an
equation for a gradient descent method has missed factor α. For the
cases where α is positive, the inaccuracy can be insignificant. How-
ever, for our case of the unstable DFC scheme, α is always negative;
thus, the algorithm provided in Ref. 31 gives gradient ascendance
and fail to minimize the control force. Therefore, we refer to Ref. 32
where corrected derivation of the adaptive DFC scheme is provided.
The equations for the slowly changing time delay τ(t) read

τ̇ = −βG, (70a)

Ġ = 2γα
[

s(1)(t)− s(1) (t − τ(t))
] [

s(1)(t)− u
]

− νG, (70b)

u̇ = γ
[

s(1)(t)− u
]

. (70c)

Here, we have two additional dynamical variables: G approx-
imates the exponential moving average (EMA) of the derivative
∂W(1)/∂τ and u is a variable for the high-pass filter. The adaptive
scheme has the following parameters: β is a speed of the gradient
descent, ν determines an integration window, and γ is a param-
eter for the high-pass filter. The parameters work on different
time scales; thus, by selecting the values, one should keep in mind
inequalities γ −1 < T(1) < ν−1 < β−1. Note that the proposed con-
trol scheme does not provide the optimal values for the control
parameters. In the practical implementation, the exact values for
the control parameters, such as λl, λn, γ , ν, β , and τ(0), should
be adjusted by a trial and error method. In particular, we set the

following values: γ = 100/T(1), ν =
(

50T(1)
)−1

, and β = ν × 10−4.
The results from numerical simulations of Eqs. (65) and (70) are
depicted in Fig. 7. As one can see in Fig. 7(a), the adaptive time
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FIG. 7. The numerical simulation of the application of the unstable DFC with
the adaptive time delay to stabilize the unstable phase difference for two het-
erogeneous oscillators. Panel (a): the evolution of the time delay together with the

evolution of “local” periods T
(i)

loc is depicted. Note that evolution of T
(1)
loc almost coin-

cides with τ(t). Three horizontal lines show the values of the natural periods T(i)

and the unstable synchronization period Tu. The starting point of τ(0) is equal
to the stable synchronization period Ts, which can be obtained from Eq. (58) by
substituting1ψ∗

s to the right hand side. Panel (b): the evolution of the exponen-

tial moving average of the power of control forces, where r2 =
(

r(1)
)2

+
(

r(2)
)2

and EMA [·] indicates the averaging procedure with an averaging window defined
by ν. Panel (c) and (d): the output signal from the FHN (blue color) and the LS
(orange color) oscillators. Panel (c) shows a control-free regime, while panel (d)
corresponds to the system under control after a transient period when τ becomes
equal to Tu. The vertical dashed lines help to see the different phase locking val-
ues: in both panels, the orange line near t = 40 shows time moment when the LS
oscillator’s output achieves maximum, while the blue lines after t = 60 in (c) and
before t = 60 in (d) represent time moment when the FHN output is maximal.

delay τ(t) successfully settled to the synchronization period Tu. In
Figs. 7(c) and 7(d), the outputs of the two oscillators are depicted
for the control-free and controlled system, respectively. Figure 7(d)
shows results after a transient period when τ(t) becomes stationary.

As one can see, both oscillators are frequency locked, but in (c) and
(d), they have different values of1ψ , as predicted by Fig. 6.

Note that strictly speaking, Eq. (70) does not minimize the

power of the control force
(

r(1)
)2

+
(

r(2)
)2

; instead, it minimizes

W(1)(t). However, as one can see from Appendix E, the minimiza-
tion of W(1)(t) is equivalent to the minimization of the power of the
control force.

B. Numerical demonstration of the stabilization of

the unstable phase difference 1ψ*u for the

master–slave coupling scheme

In Sec. V A, we analyzed the mutual coupling of the two oscil-
lators. Here, we will investigate a master–slave configuration. In this
case, the first oscillator (slave) is unidirectionally coupled to the sec-
ond oscillator (master) such that only the master can affect the slave.
In fact, the master oscillator is not necessarily possessing a limit cycle
solution and can be any system that just injects the periodic signal
to the slave oscillator.

As an illustrative example, let us imagine that there is some
primitive life form that has two phases over one day: an active phase
and a sleep phase. Let us say that the period of its internal bio-
logical clock is not exactly equal to 24 h, but due to the effect of
the sunlight, the internal clock synchronizes with the earth’s 24-h
cycle. Moreover, the active phase occurs during the day-time, while
the sleep phase comes at night. Our goal would be to use the con-
troller applied to the primitive life form such that the active phase
would be at nighttime, while the sleep phase comes at the day-time.
Additionally, the controller should be non-invasive—once the inter-
nal clock synchronizes with the sunlight, the control force should
vanish. The possibility to do it non-invasively comes from the fact
that the coupling function h(·) has two fixed points with alternating
stability.

The derivation performed in Sec. V can be simply rewrit-
ten for the case of the master–slave scheme. By substituting
G(21)

(

x(1), x(2)
)

= 0, we get H(21)
(

ψ (1) − ψ (2)
)

= 0, and accord-

ing to Eq. (55), h(1ψ) = −H(12)(1ψ). The stable synchronization
period, Ts, together with the unstable synchronization period, Tu,
coincides with the natural period of the master oscillator T(2). For
such a situation, the control force is applied only to the slave oscil-
lator. We perform numerical simulations similar to that presented
in Sec. V A with the same values of the parameters (see Fig. 8); yet,
the LS oscillator plays the role of the master and the FHN oscillator
is the slave. At the initial time moment, the slave oscillator is syn-
chronized with the master; therefore, we assume that T(2) is a known
parameter, and we can set the time delay τ = T(2) without the need
for the gradient descent procedure (70). The initial phase difference
1ψ = 1ψ∗

s after a transient period swaps to 1ψ∗
u [see Fig. 8(c)] as

it was predicted by the theory.

VI. DISRUPTION OF SYNCHRONIZATION IN THE

OSCILLATOR NETWORK BY APPLYING CONTROL TO A

SINGLE UNIT

In this section, we show the effect of coupling sign inversion
for the network of Landau–Stuart oscillators. Our aim is to disrupt
the frequency-locking regime by applying the control only to one
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FIG. 8. The numerical demonstration of the unstable DFC usage to stabilize the
unstable phase difference for the master–slave coupling configuration. Panel (a):

the evolution of the “local” periods T
(1)
loc for the slave oscillator is depicted. Here,

horizontal lines show the values of the natural periods T(i). Panel (b): the evolution
of the exponential moving average of the power of the control force applied to the
slave oscillator. Here, r ≡ r(1), and EMA[·] indicates an averaging procedure with
the averaging window ν defined in Sec. V A. Panel (c): the evolution of the phase
difference obtained as a time difference of neighboring maximums of master and
slave oscillators renormalized to 2π .

oscillator in the network. For this purpose, we take the network with
topology shown in Fig. 9, where dynamics of each unit is described
by the following equations:

f(i)
(

x, r(i)
)

=

[

x1

(

1 − x2
1 − x2

2

)

−�(i)x2 + r(i)

x2

(

1 − x2
1 − x2

2

)

+�(i)x1

]

. (71)

We assume that oscillators interact through the first variables; there-
fore, the coupling function is

G(y, x) =

[

2(y1 − x1)

0

]

(72)

and the adjacency matrix elements a(ij) = 1 (a(ij) = 0) for connected
(disconnected) units. As an output signal, we take the first dynamical

FIG. 9. Topology of the oscillator network. Different colors of the units are used
to distinguish between different oscillators in Fig. 10.

FIG. 10. The dynamics of “local” periods of the Landau–Stuart oscillator network.
Horizontal lines represent natural periods. For t < 5000, the network is a con-
trol-free possessing frequency-locking regime, where all “local” periods coincide
and form a horizontal line. After t = 5000, the control is applied to the fifth oscilla-
tor. As a consequence, the “local” periods start to drift, and the frequency locking
no longer exists. The color of symbols corresponds to the color of the oscillator in
Fig. 9.

variable,

s(t) = g(x(t)) = x1(t). (73)

The natural frequencies of the oscillators �(i) = 2π/T(i) are
estimated from natural periods T(i) = 2π + 10−2 × δTi, where
δT = [−1.2, 0.4, 0.1, −0.6, 0.3, 0.8]T. The coupling strength is set
in such a way that for the control-free system, the network is in a
frequency-locking regime: ε = 4 × 10−3.

To gain understanding how the control affects phase dynamics
of this model, one can write equations for the phase

ψ̇ (i) = �(i) + ε
(i)
eff

N
∑

j=1
j6=i

a(ij) sin
(

ψ (j) − ψ (i)
)

. (74)

As it was explained in Sec. II C, the particular coupling strength
can be changed by applying the control to the particular oscilla-
tor. We choose to affect the fifth oscillator in the network since
it has a large degree of connectivity. By numerically investigating

Eq. (74) with ε(i)eff = ε for i 6= 5 and by setting various ε(5)eff values,
one can make sure that for the positive coupling values, the sys-

tem remains in a synchronized regime. Even at ε(5)eff = 0, the network
remains synchronized with the synchronization period being equal
to T(5). The synchronization is disrupted only for negative values

of ε(5)eff . In Fig. 10, we demonstrate the disruption of the frequency-
locking regime by applying the controller to the fifth oscillator of
the Landau–Stuart oscillator network. The network is in a control-
free regime until the time t = 5000, and after that, the controller is
applied to the fifth oscillator with the following parameters: K21 =

−1, κ = 0.42, λl = 0.05, λn = −0.5, and τ = T(5). In such a case,
ε
(5)
eff = −0.5ε. The results confirm that the control-free system is

in the frequency-locking state, while under control, the frequency
locking is disrupted.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we present the unstable delayed feedback con-
trol algorithm to effectively change the sign of the coupling constant
for the weakly coupled limit cycle oscillators. Since the algorithm
is based on the feedback action, it works for a general class of the
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limit cycle oscillators possessing a single input and a single output.
The controller, summarized in Eq. (43), contains two main parts:
the unstable degree of freedom, which destabilizes the oscillator, and
the delayed feedback force, which returns the stability to the oscilla-
tor. The consequence of such manipulations is that the phase of the
limit cycle “feels” the coupling constant inverted with respect to the
natural one.

Numerical calculations performed in Sec. IV for the FitzHugh–
Nagumo and Landau–Stuart oscillators demonstrate a successful
application of the controller to switch between the in-phase and
anti-phase synchronizations. Additionally, in Sec. V, we demon-
strate the non-invasive nature of the controller. Two coupled oscil-
lators or one oscillator in the presence of periodic force has two
solutions for the phase difference: the stable and unstable solutions.
We show that without prior knowledge of the unstable solution,
the controller supplemented by the gradient descent algorithm32 is
able to stabilize the unstable phase difference with vanishing control
force.

The proposed algorithm is versatile for an experimental real-
ization since an application of the algorithm does not require a
priori knowledge of the structure of the oscillator and the law of
mutual coupling. The possible experimental implementation of the
algorithm can be realized similarly to synchronization engineering
experiments presented in Refs. 28–30 where a collective behavior
of electrochemical oscillators was controlled. The feedback signal
can be constructed by electrical circuits33,34 or by a real-time data
acquisition computer.

As it is shown in Refs. 35 and 36, the metronomes placed
on a movable platform usually synchronize in-phase, while two
pendulum clocks hanging on the same beam tend to synchro-
nize anti-phase. The provided algorithm can potentially be used
to switch between both regimes. Another potential application of
the algorithm can be a disruption of the synchronization in the
networks. As shown in Sec. VI, the general synchronous state is cor-
rupted by applying the controller selectively to only one unit with a
large degree of connectivity.
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APPENDIX A: FLOQUET MULTIPLIERS AND A PHASE

RESPONSE CURVE OF OSCILLATORS SUPPLEMENTED

BY AN UNSTABLE DEGREE OF FREEDOM

The n-dimensional oscillator supplemented by the unstable
degree of freedom reads

ẋ = f (x, w) , (A1a)

ẇ = (λl + λns(t))w, (A1b)

s(t) = g (x(t)) . (A1c)

By introducing notations for the n × n Jacobian matrix

A(t) = D1f (ξ(t), 0) (A2)

and n × 1 vector of the derivatives with respect to the input signal

p(t) = D2f (ξ(t), 0) , (A3)

one can write the evolution of a small perturbation near the limit
cycle (ξT

(t), 0) as

(

δẋ

δẇ

)

=

(

A(t) p(t)
0T

n λl + λng (ξ(t))

)(

δx
δw

)

; (A4)

here, 0n is an n-dimensional column-vector with all entries equal
to zero. In order to obtain a monodromy matrix, one should solve
the system (A4) with (n + 1) different initial conditions, taken from
columns of an identity matrix. Thus, for the first n initial condi-
tions, the solution for δw is δw(T) = 0. For the last solution, where
δw(0) = 1, one can obtain that

δw(T) = exp

[

λlT + λn

∫ T

0

g (ξ(t)) dt

]

. (A5)

Let us say that the control-free oscillator has n-dimensional mon-
odromy matrix 8̄, which has the Floquet multipliers (1,µ2, . . . ,µn).
Then, the monodromy matrix of the system (A1) reads

8 =

(

8̄ a

0T
n exp

[

λlT + λn

∫ T

0
g (ξ(t)) dt

]

)

; (A6)

here, a is an n-dimensional column-vector containing in this context
unimportant values. From the last equation, one can see that the sys-
tem (A1) possesses the same Floquet multipliers (1,µ2, . . . ,µn) as 8̄
and one additional µn+1, defined by the right hand side of (A5).

The phase response curve of the system (A1) is a left Flo-
quet mode corresponding to trivial Floquet multiplier µ1 = 1 and
satisfying following equations:

v̇T
1 = −vT

1

(

A(t) p(t)

0T
n λl + λng (ξ(t))

)

. (A7)

Here, the index 1 denotes that we are looking for the first left Floquet
mode corresponding to the first Floquet multiplier. The periodic
solution v1(t + T) = v1(t) is normalized to the first right Floquet
mode,

[

v1,1:n(0)
]T

· ξ̇(0)+ v1,n+1(0) · 0 = 1, (A8)

where the additional indexes 1 : n are used to denote a vector con-
structed from the vector v1 by taking the elements from first to
nth. From (A7) and (A8), one can see that the first n elements
v1,1:n(t) of the phase response curve of the system (A1) coincide with
the phase response curve v̄1(t) of the oscillator without an unsta-
ble degree of freedom, while the last component satisfies a linear
non-homogeneous differential equation,

v̇1,n+1 = −
[

λl + λng (ξ(t))
]

v1,n+1 + P(t), (A9)

with periodic function

P(t) = v̄T
1 (t) · p(t)

= vT
1,1:n(t) · p(t). (A10)
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The periodic solution to Eq. (A9) can be written analytically

v1,n+1(t) = exp

(

−λlt − λn

∫ t

0

g
(

ξ(t′)
)

dt′
)

×





∫ T

0
P(t′) exp

(

λlt
′ + λn

∫ t′

0
g (ξ(t′′)) dt′′

)

dt′

1 − exp
[

λlT + λn

∫ T

0
g (ξ(t′)) dt′

]

−

∫ t

0

P(t′) exp

(

λlt
′ + λn

∫ t′

0

g
(

ξ(t′′)
)

dt′′

)

dt′

]

.

(A11)

APPENDIX B: ON THE (n + 1)-TH LEFT FLOQUET

MODE

The limit cycle oscillator supplemented by the unstable degree
of freedom and governed by Eq. (A1) has n + 1 left and right Floquet
modes. The equation for the ith right Floquet mode reads

u̇i +3iui =

(

A(t) p(t)

0T
n λl + λng (ξ(t))

)

ui. (B1)

From Eq. (B1), one can see that the last component of the vector ui

is decoupled from the rest of the components

u̇i,n+1 =
[

λl + λng (ξ(t))−3i

]

ui,n+1. (B2)

The function ui,n+1(t) is T-periodic; thus,

ui,n+1(0) = ui,n+1(0)e
λlT+λn

∫ T
0 g(ξ(t))dt−3iT. (B3)

From the last equation, one can see that for i = 1, 2, . . . , n,

ui,n+1(t) = 0, (B4)

while for i = n + 1, we have

un+1,n+1(t) = un+1,n+1(0)e
λlt+λn

∫ t
0 g(ξ(t′))dt′−3n+1t. (B5)

The left Floquet mode vn+1 is orthogonal to right Floquet modes ui

(where i = 1, . . . , n); therefore, Eq. (B4) gives the following orthog-
onality relations:

vT
n+1,1:n(t) · ui,1:n(t) = 0. (B6)

Note that ui,1:n(t) coincides with the right Floquet modes of the oscil-
lator without the unstable degree of freedom; thus, ui,1:n(t) is a set
of n linearly independent vectors that form a full basis and, there-
fore, (B6) implies that vn+1,1:n(t) = 0. While the last component with
respect to Eq. (B5) reads (without loss of generality, a normalization
constant for the left Floquet mode can be chosen arbitrary; thus, one
can choose un+1,n+1(0) = 1)

vn+1,n+1(t) = e3n+1t−λlt−λn
∫ t
0 g(ξ(t′))dt′ . (B7)

APPENDIX C: ON THE (n + 1)-TH RIGHT FLOQUET

MODE IN THE LIMIT 3n+1 → 0

In the limit 3n+1 → 0, the last component of the (n + 1)-th
right Floquet mode reads [cf. Eq. (B3) and un+1,n+1(0) = 1]

un+1,n+1(t) = eλlt+λn
∫ t
0 g(ξ(t′))dt′ , (C1)

while the first n components, according to Eq. (B1), satisfy

u̇n+1,1:n = [A(t)−3n+1In] un+1,1:n + p(t)un+1,n+1(t), (C2)

where In is the n-dimensional identity matrix. Note that here, we
cannot neglect small 3n+1 since the Jacobian A(t) gives trivial FE
31 = 0, and interference between two FEs should be treated ana-
lytically. Equation (C2) is a linear non-homogeneous equation with
periodic coefficients. First, let us write a solution to the homoge-
neous equation

u̇ = [A(t)−3n+1In] u. (C3)

By denoting the evolution matrix of the oscillator without the unsta-
ble degree of freedom as 8̄(t), the evolution matrix to Eq. (C3) is
8u(t) = 8̄(t) exp(−3n+1t). Therefore, the general solution to (C2)
reads

un+1,1:n(t) = 8u(t)

{

c +

∫ t

0

8−1
u (t

′)p(t′)un+1,n+1(t
′)dt′

}

, (C4)

where c is a vector of initial conditions. In order to have peri-
odic vector un+1,1:n(t + T) = un+1,1:n(t), the initial condition should
satisfy

c = [In − 8u(T)]
−1 8u(T)

∫ T

0

8−1
u (t)p(t)un+1,n+1(t)dt. (C5)

The evolution matrix 8̄(t) in terms of right ūi(t) and left v̄i(t)
Floquet modes of the n-dimensional oscillator reads

8̄(t) = Ū(t)diag
[

exp(3it)
]

V̄(0), (C6)

where Ū(t) (V̄(t)) is a matrix filled by right (left) Floquet modes
written to columns (rows) and diag

[

exp(3it)
]

is a diagonal matrix
with the value e3it on the ith entry. Using (C6), the initial conditions
[Eq. (C5)] read

c = Ū(0)diag

[

(

µn+1

µi

− 1

)−1
]

·

∫ T

0

diag
[

e(3n+1−3i)t
]

V̄(t)p(t)un+1,n+1(t)dt. (C7)

Finally, one can take the limit 3n+1 → 0. In the leading order
of 3n+1, the matrix diag

[

(µn+1/µi − 1)−1
]

has the first compo-

nent equal to (3n+1T)
−1, while the rest of the components can be

neglected. Then, Eq. (C7) reads

c =
ū1(0)

3n+1T

∫ T

0

v̄T
1 (t)p(t)un+1,n+1(t)dt. (C8)

The last equation shows that c goes to infinity in the limit3n+1 → 0,
while the second term in curly brackets of Eq. (C4) remains finite
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and thus can be ignored. Then, Eq. (C4) simplifies to

un+1,1:n(t) =
ū1(t)

3n+1T

∫ T

0

v̄T
1 (t

′)p(t′)un+1,n+1(t
′)dt′. (C9)

Using (C1) and recalling that v̄1(t) = v1,1:n(t), Eq. (C9) reads

un+1,1:n(t) =
ξ̇(t)

3n+1T

∫ T

0

vT
1,1:n(t

′)p(t′) exp

[

λlt
′ + λn

∫ t′

0

g
(

ξ(t′′)
)

dt′′

]

dt′.

(C10)

APPENDIX D: ANALYTICAL EXPRESSION OF AN

ADDITIONAL PERIODIC ORBIT

According to Sec. III, the dynamical system under the DFC
described by Eq. (43) with τ = T has the periodic solution
(xT(t), w(t)) = (ξT

(t), 0) for any value of κ . At point κ = κ∗, the
limit cycle (ξT

(t), 0) has two degenerate FMs µ = 1; therefore,
there should be two linearly independent real Floquet modes cor-
responding to the FMs. One of them is the trivial Floquet mode

represented as a derivative of the limit cycle u1(t) = (ξ̇
T
(t), 0)

T

.
According to Eq. (21), all real Floquet modes of the DFC system
can be mapped to the PFC system and vice versa; however, if we
substitute κ = κ∗ and 3D(κ

∗) = 0, we get 3P = 0 and therefore,
0 = κ∗[1 − exp(−3PT)] = 0. At 0 = 0, the PFC system has only
one Floquet mode corresponding to µ = 1, that is, the trivial Flo-
quet mode. The reason for such incompatibility is that for the DFC
system, an algebraic multiplicity of the eigenvalue µ = 1 is equal to
2, while a geometric multiplicity is equal to 1, and we should look
for the second Floquet mode as being a generalized eigen-vector
of a monodromy operator rather than a regular eigen-vector of a
monodromy operator. Such a generalized Floquet mode, denoted as
u1,gen(t + T) = u1,gen(t), corresponds to an additional periodic orbit

that coalesces with the limit cycle (ξT
(t), 0) at κ = κ∗. The point

κ = κ∗ is the transcritical bifurcation point, and the generalized
Floquet mode u1,gen(t) is nothing more than

u1,gen(t) =
u
(1)
P,1(t)

3′
P,1(0)T

, (D1)

where u
(1)
P,1(t) is defined by Eq. (24).

Let us analyze small perturbations from the limit cycle
(ξT
(t), 0) along Floquet modes. Starting from an initial state

(ξT
(t), 0)

T
+1u1(t), where 1 is infinitely small quantity having a

time dimension, after evolution over period T (equivalently one
can say that after acting with the monodromy operator), the final
state will be exactly the same initial state because u1(t) represents
perturbation along the limit cycle or in other words, u1(t) is an
eigen-vector of the monodromy operator with the eigenvalue equal

to 1. Next, let us consider the initial state (ξT
(t), 0)

T
+1u1,gen(t).

After acting on it by the monodromy operator [note that u1,gen(t)

is a generalized eigen-vector of rank 2], we will get (ξT
(t), 0)

T

+1u1,gen(t)+1u1(t), and if we additionally evolve such state back-
ward in time by the small amount 1, we will end up with the same

initial state (ξT
(t), 0)

T
+1u1,gen(t). Since we performed evolution

over time Tadd = T −1 and returned back to an initial state, one
can say that there is additional periodic solution

(

ξ add(t)

wadd(t)

)

=

(

ξ
(

t T
Tadd

)

0

)

+1u1,gen

(

t
T

Tadd

)

(D2)

with the period Tadd. Note that the existence of an additional peri-
odic solution (D2) agrees with Refs. 20 and 23. In order to check
that Eq. (D2) is a solution of the system (43), let us set κ = κ∗

+1κ , where 1κ ≡ 1κ(1) ∼ O(1) is a small deviation from the
threshold value κ∗, then insert (D2) into both sides of Eq. (43) and
collect the terms up to the order O(1). For the convenience, let us
rewrite (D2) as

(

ξ add(t)
wadd(t)

)

=

(

ξ
(

t
(

1 + 1

T

))

0

)

+
1

3′
P,1(0)T

u
(1)
P,1

(

t

(

1 +
1

T

))

. (D3)

Now, by substituting (D3) into the left hand side of Eq. (43), one gets
[here t′ = t(1 +1/T)]

(

ξ̇(t′)

0

)(

1 +
1

T

)

+
1

3′
P,1(0)T

u̇
(1)
P,1(t

′), (D4)

while substituting (D3) into the right hand side of Eq. (43), one
can see that 1κ appears multiplied by 1; thus, it can be dismissed;
therefore, one gets

(

f(ξ(t′), 0)
0

)

+
1

3′
P,1(0)T

(

A(t′) p(t′)

0T
n λl + λng(ξ(t′))

)

u
(1)
P,1(t

′)

− κ∗1

(

0n×n 0n

K̃21q
T(t′) 0

)(

ξ̇(t′)
0

)

. (D5)

From (29), one can see that κ∗ = 1/
(

3′
P,1(0)T

)

; therefore, by equat-
ing (D4) and (D5), one can prove that (D2) indeed is a periodic

solution with the period Tadd and u
(1)
P,1(t) satisfies Eq. (25).

APPENDIX E: O(ε) ORDER NON-INVASIVENESS OF

THE CONTROL FORCE FOR TWO COUPLED

OSCILLATORS

First, let us consider the control-free oscillators [Eq. (52)]. The
phase reduction allows us to obtain phase dynamics up to the order
O(ε). On the other hand, in order to obtain the state of the oscil-
lators x(i)(t) up to the order O(ε), one should perform additional
calculations. The phase model (54) possesses the solution 1ψ∗

u ;
therefore, the state of the oscillators can be written in the form

x(1)(t) = ξ (1)
(

t
T(1)

Tu

)

+ εζ (1)(t)+ O
(

ε2
)

, (E1a)

x(2)(t) = ξ (2)
(

t
T(2)

Tu

+
1ψ∗

u

2π
T(2)

)

+ εζ (2)(t)+ O
(

ε2
)

, (E1b)
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where Tu is the synchronization period obtained by (58),
ξ (i)

(

t + T(i)
)

= ξ (i) (t) is a periodic solution to uncoupled oscilla-
tors (ε = 0) that plays the role of the zeroth-order term O(ε0)

for the expansion (E1), and the periodic function εζ (i) (t + Tu)

= εζ (i) (t) is a first-order correction to the oscillator’s state vector.
Note that further expansion [say, O(ε2)-order terms and higher]
cannot be performed without supplement of the phase model (54)
by additional O(εj)-order terms.

The next step is to obtain the functions ζ (i)(t). We put
the expansion (E1) into Eq. (52) and collect O(ε)-order terms
on both sides of the equations [note that here, we use Eq. (58)
in order to approximate T(1)/Tu ≈ 1 + ε

�
H(12)

(

1ψ∗
u

)

and T(2)/Tu

≈ 1 + ε

�
H(21)

(

−1ψ∗
u

)

],

ζ̇
(1)
(t) = A(1)

(

t
T(1)

Tu

)

ζ (1)(t)

+ G(12)

(

ξ (2)
(

t
T(2)

Tu

+
1ψ∗

u

2π
T(2)

)

, ξ (1)
(

t
T(1)

Tu

))

−
H(12)

(

1ψ∗
u

)

�
ξ̇
(1)
(

t
T(1)

Tu

)

, (E2a)

ζ̇
(2)
(t) = A(2)

(

t
T(2)

Tu

+
1ψ∗

u

2π
T(2)

)

ζ (2)(t)

+ G(21)

(

ξ (1)
(

t
T(1)

Tu

)

, ξ (2)
(

t
T(2)

Tu

+
1ψ∗

u

2π
T(2)

))

−
H(21)

(

−1ψ∗
u

)

�
ξ̇
(2)
(

t
T(2)

Tu

+
1ψ∗

u

2π
T(2)

)

, (E2b)

where A(i)(·) is the Jacobian of the ith oscillator defined by (16).
Although Eq. (E2) contains an undefined frequency of the “cen-
tral” oscillator �, in order to avoid uncertainties without loss of
the accuracy, one can substitute, for example, � = �(1) to (E2a)
and � = �(2) to (E2b). The last equations are first-order linear
non-homogeneous differential equations with periodic coefficients,
and its periodic solution can be obtained by using Floquet theory.37

However, as we will see later, we do not need to have explicit solu-
tions; instead, it is enough to have an explicit differential equation
(E2).

Now, let us consider two oscillator’s system (59) under the
unstable DFC described by Eq. (43) with τ (1) = τ (2) = Tu. Similar
to Eq. (E1), one should perform the expansion of the state vectors
(

[

x(i)(t)
]T

, w(i)(t)
)T

up to the O(ε2)-order and show that the O(ε)-

order term for the additional variable w(i)(t) is zero. Fortunately, it
is very easy to do. In fact, one can check that the form

(

x(1)(t)
w(1)(t)

)

=

(

ξ (1)
(

t T(1)

Tu

)

0

)

+ ε

(

ζ (1)(t)
0

)

+ O
(

ε2
)

, (E3a)

(

x(2)(t)
w(2)(t)

)

=

(

ξ (2)
(

t T(2)

Tu
+

1ψ∗
u

2π
T(2)

)

0

)

+ ε

(

ζ (2)(t)
0

)

+ O
(

ε2
)

(E3b)

is a solution to (59) where the functions ζ (i)(t) are the same func-
tions defined by Eq. (E2). Thus, we conclude that the O(ε)-order
term for the variable w(i)(t) is zero. Since the control force r(i)(t)
= w(i)(t), we end up with O(ε)-order non-invasiveness of the con-
trol force.
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