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Abstract The problem of controlling synchrony in bi-
stable networks, which possess coherent and incoher-
ent attractors in a certain range of parameters, is con-
sidered. Along with the known Kuramoto-type models,
we introduce the bistable networks consisting of all-to-
all coupled noisy FitzHugh-Nagumo neurons as well as
chaotic Rulkov neurons. We suggest two different al-
gorithms to switch the bistable networks from the sta-
ble coherent state to the stable incoherent state. One
of them is an act-and-wait control method, which uti-
lizes the mean field measurements and homogeneous
time delayed feedback perturbations with the periodi-
cally switched on and off feedback gain. We show that
this algorithm is efficient for the globally coupled popu-
lations. Another algorithm is based on the multisite co-
ordinated reset stimulation. The algorithm is nonfeed-
back, but it uses inhomogeneous perturbations and is
efficient even for the networks with a complex scale-free
topology. In addition to the numerical analysis of finite
size networks, the analytical results for the Kuramoto-
type models in the thermodynamic limit are presented.

Keywords Complex networks · Synchronization ·
Neuron models · Control of bistability

1 Introduction

Systems of many interacting oscillatory elements are of
great interest in a wide variety of scientific fields includ-
ing physics, chemistry, and biology [1–4]. Synchronous
behavior appearing in such systems may be useful for
practical applications, e.g. for generation of strong co-
herent fields in coupled arrays of lasers or Josephson
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junctions. However, in many cases the synchronization
is undesired and should be suppressed. An example of a
dangerous synchronization is the lateral swing of Lon-
don’s Millennium Bridge caused by coherent motion of
walkers [5].

The observations of synchronous neural activity in
the central nervous system have stimulated a great deal
of theoretical work on synchronization in neural net-
works [6]. The synchronization of oscillations is a mech-
anism for neural communication, which endows individ-
ual brain areas with the ability to perform specific tasks
[7]. Conversely, extremely strong synchronization may
impair brain function and cause various neurological
disorders like Parkinson’s disease [8–10] or epilepsy [11].
For this reason the research on control of synchroniza-
tion in neural networks has attracted a great attention.

Methods for controlling synchronization in networks
of coupled oscillators developed to date can be divided
in two categories: (i) an open loop (nonfeedback) con-
trol and (ii) a closed loop (feedback) control. Nonfeed-
back algorithms are mainly based on a phase resetting
stimulation [12–14]. The closed loop control methods
are more diversified; they include linear [15–20] and
nonlinear [21–23] time-delayed feedback control algo-
rithms as well as other approaches [24–28]. All these
algorithms have been developed to networks, which pos-
sess a stable coherent state and an unstable incoherent
state. The aim of the algorithms was to stabilize an
unstable incoherent state.

In this paper, we consider the problem of controlling
synchrony in bistable networks, which possess the co-
existing coherent and incoherent states, both being sta-
ble for the same values of the parameters. The specific
asymptotic state of such a system depends on the ini-
tial conditions. The control problem that we formulate
here is as follows. We assume that a bistable network is
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initially in the stable coherent state and our aim is to
design a particular time-dependent perturbation which
enables us to switch the system to the stable incoherent
state. Such a problem can be motivated, e.g., by a pos-
sible control of epilepsy, which is modeled by a bistable
neural network in which the disease and healthy states
are associated with the stable coherent and incoherent
states, respectively [11].

Generally, the control of multistable systems repre-
sents a rather complicated problem (see recent review
[29] and references therein). There are no universal al-
gorithms to solve this problem, since one has to deal
with the global properties of the phase space of the con-
trolled system. In our case, the control problem is espe-
cially difficult, since we employ rather hard constraints,
which are typical for real-world neural networks. We
assume that the individual oscillators of the network
are not available for the separate control and measure-
ments. The control is available only on the macroscopic
level and we can measure only the mean field of the sys-
tem. In this paper, we describe two strategies for con-
trolling synchronization in bistable networks. The first
strategy is based on an act-and-wait control algorithm
[20,30–33], which represents a time delayed feedback
control with a periodically switched on and off control
gain. The second strategy utilizes a nonfeedback mul-
tisite coordinated reset (MCR) stimulation algorithm
[13,14].

Synchronization bistability has been observed in dif-
ferent models of oscillatory networks. Most of them rep-
resent Kuramoto-type models in which individual oscil-
lators are described by a phase variable. The coexist-
ing stable coherent and incoherent states have been de-
tected in networks of all-to-all coupled phase oscillators
[34–38] as well as phase oscillators coupled via scale-free
topology [39,40]. In the latter case only few oscillators
have many links, while majority of them are attached to
several oscillators. The synchronization bistability has
been also analyzed in networks consisting of more com-
plex elements such as FitzHugh-Nagumo (FHN) neu-
rons [41] or chaotic oscillators [42].

We demonstrate our control algorithms for several
models of bistable networks. First, we verify our control
ideas on a generalized Kuramoto model [37], which ad-
mits an analytical treatment. Here the network consists
of two types of phase oscillators, which are either posi-
tively (excitatory) or negatively (inhibitory) coupled to
all other oscillators of the network. In addition, we in-
troduce two bistable networks, constructing in analogy
to Ref. [37], but instead of phase oscillators as units of
the network, we utilize the FitzHugh-Nagumo [43,44]
and Rulkov [45] neurons. Finally, we employ a network

of phase oscillators connected via a scale-free topology
[39].

The paper is organized as follows. In Sec. 2, four
models of bistable networks are presented and the ex-
istence of a hysteresis in synchronization diagrams is
demonstrated. Sections 3 and 4 are devoted to the act-
and-wait and MCR control algorithms, respectively. Us-
ing numerical and analytical methods we demonstrate
their capability to eliminate synchronization in the above
described networks. The conclusions are presented in
Sec. 5.

2 Models of bistable oscillatory networks

In this section, we briefly present four models of bistable
oscillatory networks, which will be utilized as testing
benchmarks for our proposed synchronization control
algorithms (see Secs. 3 and 4). The models include net-
works of phase oscillators connected in all-to-all and
scale-free topologies as well as networks of FHN and
Rulkov neurons. For all these models, we demonstrate
the synchronization bistability with the coexisting sta-
ble coherent and incoherent states. To this end, we
compute a synchronization criterion as a function of
a control parameter using forward and backward con-
tinuations and show that there is a hysteresis in this
dependence.

2.1 Kuramoto model with positive and negative
couplings

A generalized Kuramoto model that demonstrates syn-
chronization bistability has been proposed in Ref. [37]:

θ̇j = ωj + Kj

N

N∑
l=1

sin(θl − θj), j = 1, . . . , N. (1)

Here θj is the phase of the jth oscillator and ωj is
its natural frequency, chosen at random from a uni-
modal, symmetric probability density g(ω). There are
two types of oscillators in the population referred to as
conformists and contrarians. The conformists are posi-
tively connected (Kj > 0) to all other oscillators of the
population and they tend to fall in line with whatever
rhythm has emerged in the population. The contrari-
ans have negative coupling strength Kj < 0 and they
are repelled by the prevailing rhythm. In terms of neu-
roscience, the positive and negative values of the co-
efficients Kj correspond to the excitatory a inhibitory
coupling, respectively.
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For the Kuramoto-type models, the collective rhythm
is usually quantified by the complex order parameter

R = 1
N

N∑
l=1

eiθl . (2)

The absolute value 0 ≤ |R| ≤ 1 of this parameter mea-
sures the macroscopic coherence of the system. The
value |R| = 0 indicates the incoherent state while |R| =
1 defines the fully synchronized state. The values in-
between represent partially synchronized states. By means
of the definition (2), the system (1) can be rewritten as

θ̇j = ωj + Im
[
KjRe

−iθj
]
, j = 1, . . . , N. (3)

In our numerical simulations, we choose the natural
frequencies of the oscillators from the Lorentz distribu-
tion

g(ω) = (∆/π)
[
(ω − ω0)2 +∆2]−1 (4)

and then subdivide randomly the whole population of
N oscillators into two groups with N− and N+ oscilla-
tors in each subpopulation. For all oscillators in the first
subpopulation we assign the same negative value of the
coupling strength Kj = κ1 < 0 and label these oscilla-
tors as contrarians. Similarly, for the second, conformist
subpopulation, we set Kj = κ2 > 0. We also introduce
the parameter p = N+/N that denotes the proportion
of conformists in the population.

In Fig. 1, we present an example of a synchroniza-
tion diagram that demonstrates the hysteresis in the
dependence |R| versus p and thus the existence of the
bistability. The system (1) consisting of N = 10000
phase oscillators was numerically simulated for the fixed
values of the parameters ω0 = 0, ∆ = 0.05, κ1 = −3
and κ2 = 1. The values of the parameter p were first
increased progressively for p0, p0 +δp, . . . , p0 +nδp (for-
ward continuation) and then decreased from p0 + nδp

to p0 (backward continuation). For each fixed p, the
stationary post-transient values of the order parameter
|R| were computed and depicted in Fig. 1. In this dia-
gram, the lower branch indicates the incoherent state,
when the oscillators are completely desynchronized and
scattered uniformly across all phases. The upper branch
represents the state in which the conformists and con-
trarians are partially synchronized into two diametri-
cally opposed clusters whose phases are separated by
the angle π. The forward and backward continuations
lead to the sudden jumps of the order parameter from
zero (incoherent state) to a finite value (coherent state)
and back. The jumps take place at different values of
the parameter p. The stable incoherent and coherent
states coexist in the interval of p between the jumps of
the order parameter.
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Fig. 1 Synchronization diagram for the generalized Kuramoto
model (1) consisting of N = 10000 coupled phase oscillators at
the parameter values ω0 = 0, ∆ = 0.05, κ1 = −3 and κ2 =
1. Blue (dark) and red (light) curves show the forward and
backward continuations, respectively. The continuation step is
δp = 0.0075 (Color figure online)

The main advantage of this model is that it admits
an analytical treatment in the thermodynamic limit of
infinite number of oscillators N →∞. In the next sec-
tions, we will use this approach to facilitate the analysis
of our proposed bistability control algorithms.

2.2 Synaptically coupled FitzHugh-Nagumo neurons

In this section, we present a bistable network constructed
in a similar way as described above, but instead of the
phase oscillators as units of the network we utilize FHN
[43,44] neurons. Moreover, we take into account the
synaptic coupling between neurons and the presence of
noise. Specifically, our model is as follows:

v̇j = f(vj)− wj + I − Isyn − Icon + ξj , (5a)
ẇj = εj(b0 + b1v − wj) (5b)

for j = 1, . . . , N . Here the variable vj denotes the mem-
brane potential and wj is the recovery variable of the
jth neuron, f(vj) = vj − v3

j /3 is the cubic source term
of an ionic current and I is a constant current that
defines the spiking regime of uncoupled neurons. The
current Isyn defines the coupling between neurons and
Icon is the control current, which will be defined in the
next sections. Here we take Icon = 0. The last term in
Eq. (5a) is the white Gaussian noise, which is different
and independent for each neuron. We assume that the
mean value of the noise is zero 〈ξj〉 = 0 and the stan-
dard deviation is σξj

= 0.1. The parameter εj defines
the ratio between the characteristic time scales of vj
and wj variables and also the spiking period of the jth
neuron. To scatter the spiking periods of the neurons
we choose εj randomly from the Gaussian distribution
with the mean 〈ε〉 = 0.02 and the standard deviation
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σε = 0.1〈ε〉. The other parameters are chosen as follows
b0 = 2 and b1 = 1.5.

To mimic realistic junctions between neurons, we
couple them synaptically. We assume for simplicity that
the coupling is global and write the term of synaptic
current in the form

Isyn = Kj(vj − Uj)
1

N − 1
∑
k 6=j

Θ(vk − v0), (6)

where Kj is the coupling strength and Uj defines the
reversal potential of the jth neuron. Θ(v) = 1/[1 +
exp(−(v − vth)/∆)] is the sigmoid function with the
threshold parameter vth = 1.5 and the width ∆ = 0.1.
In analogy to the previous model, we subdivide ran-
domly the whole population of N neurons into two
groups consisting of Nexc and Ninh neurons, character-
ized by the excitatory and inhibitory coupling, respec-
tively. We distinguish them by the values of the pa-
rameters Kj and Uj . For excitatory coupled neurons,
we choose Kj = κ1 = 0.4 and Uj = u1 = 2.5, while
for inhibitory coupled neurons, we take Kj = κ2 = 1.2
and Uj = u2 = −2.5. We denote by p = Nexc/N the
proportion of excitatory coupled neurons.

The use of the order parameter (2) as a synchroniza-
tion criterion is problematic for the system (5), since it
is difficult to define the phases of individual neurons
when their dynamics is complex. Here we use an alter-
native synchronization criterion based on the variance
Var(V ) of the mean field:

V (t) = 1
N

N∑
j=1

vj(t). (7)

In the synchronized state, when all neurons spike simul-
taneously, the value of this parameter is large, while in
the incoherent state it is close to zero. In addition, we
introduce the variances Var(Vexc) and Var(Vinh) for the
mean fields of excitatory and inhibitory coupled neu-
rons in order to separately measure the synchronization
level in each of the subpopulations.

Figure 2 shows the dependence of the variances Var(V ),
Var(Vinh) and Var(Vexc) on the parameter p. The com-
putations were performed for the total number of N =
5000 neurons with the continuation step δp = 0.017.
The hysteresis in these dependencies indicates the pres-
ence of the bistability. In the interval of the parameter
p ∈ (0.45, 0.62) the phase space of the system has two
attractors related to the coherent and incoherent states.

2.3 Network of chaotic Rulkov neurons

Another bistable network, which will be tested by our
control algorithms, is again constructed in the spirit of
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Fig. 2 Synchronization diagrams for the network of N = 5000
synaptically coupled FHN neurons (5). Blue (dark) and red
(light) curves show the forward and backward continuations,
respectively. The continuation step is δp = 0.0075, the values of
other parameters are presented in the text. Equations (5) were
integrated by Euler-Maruyama method with time step h = 0.05
(Color figure online)

Ref. [37], but now we utilize Rulkov [45] neurons as
units of the network. Rulkov has designed his neuron
as a simple 2D map in order to model chaotic neu-
ral bursting. This model is computationally efficient for
simulating very large networks of neurons. Our network
constructed from Rulkov neurons reads:

xj(t+ 1) = α

(1 + x2
j (t))

+ yj(t) +KjX(t) + Icon, (8a)

yj(t+ 1) = yj(t)− µ(xj(t)− σ) (8b)

for j = 1, . . . , N . Here xj and yj are dynamic variables
of the jth Rulkov neuron and t is the discrete time. The
neurons are coupled via mean field

X(t) = 1
N

N∑
j=1

xj(t). (9)

where Kj is the coupling strength of the jth neuron
andN is the total number of neurons. Again, we assume
that there are two subpopulations, consisting ofN− and
N+ neurons. Each neuron in the first subpopulation
is negatively coupled to the mean field with the same
coupling coefficient Kj = κ1 = −0.5, while neurons
in the second population are coupled positively with
Kj = κ2 = 0.25. The last term Icon in the right hand
side of Eq. (8a) represents the control current, which
will be defined in Secs. 3 and 4. Here we consider the
system without control, thus Icon = 0. We take the
values of the parameters α = 4.3, µ = 0.01, σ = −1,
which correspond to a chaotic bursting regime of the
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Fig. 3 Synchronization diagrams for the network of N =
20000 positively and negatively coupled Rulkov neurons (8).
Blue (dark) and red (light) curves show the forward and back-
ward continuations, respectively. The continuation step is δp =
0.001, the values of other parameters are presented in the text
(Color figure online)

isolated Rulkov neurons. Note that in our constructed
network all neurons are identical, however, we assign
them different initial conditions.

We characterize the coherence of the network as
above by estimating the variance of the total mean field
Var(X) and the variances of the mean fields of the nega-
tively and positively coupled subpopulations, Var(X−)
and Var(X+), respectively. The dependencies of these
parameters on the the proportion of positively coupled
neurons p = N+/N for N = 20000 are shown in Fig. 3.
We see that the coherent and incoherent attractors co-
exist for p ∈ (0.69, 0.74).

2.4 Scale-free network of phase oscillators

The last bistable network analyzed in this paper differs
essentially from the previous three by the topology of
connections. Now we consider a network of phase oscil-
lators connected by a scale-free topology:

θ̇j = ωj +K

N∑
l=1

ajl sin(θl − θj). (10)

Here ajl is an element of the adjacency matrix A, which
encodes network’s topology. For the connected j and l
oscillators, the matrix element is equal to one, ajl = 1,
while ajl = 0 otherwise. We assume that the coupling
is symmetric alj = ajl and there are no self-connections
all = 0. In the scale-free networks, the proportion P (k)
of nodes having k connections satisfies for large k the
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Fig. 4 Synchronization diagram for the scale-free network of
N = 1000 phase oscillators (10). The adjacency matrix is gen-
erated using the configuration model [46] with the parameters
γ = 2.4, 〈k〉 = 6 and kmin = 1. The natural frequency for each
oscillator is equal to its degree, ωj = kj . Blue (dark) and red
(light) curves show the forward and backward continuations,
respectively. The continuation step is δK = 0.05 (Color figure
online)

power law P (k) ∼ k−γ with γ > 0. It was shown [39]
that in scale free networks the hysteresis appears when
the natural frequencies ωj of oscillators are positively
correlated with their degrees (numbers of connections
kj), i.e. when ωj ∼ kj .

We quantify the degree of synchronization among
oscillators by the order parameter (2). Figure 4 shows
the dependence of this parameter on the coupling strength
K for a scale-free network consisting of N = 1000 oscil-
lators. The adjacency matrix was generated according
to the configuration model [46] with the scale factor
γ = 2.4, average degree 〈k〉 = 6 and minimal junc-
tion number kmin = 1. The natural frequency of each
oscillator were chosen equal to its degree, ωj = kj .
The observed hysteresis indicates the bistability of syn-
chronization in the interval of the coupling strength
K ∈ (0.54, 0.65).

3 Eliminating synchronization via an
act-and-wait algorithm

As a first candidate for controlling synchronization in
bistable networks, we consider the algorithm, which
in control theory is known as an act-and-wait control
method [30–33]. Recently we have applied this algo-
rithm to monostable oscillatory networks, which pos-
sess stable coherent and unstable incoherent states, and
shown that it can effectively stabilize the incoherent
state [20]. Now we verify the capability of this algorithm
to switch a bistable network from the stable coherent
state to the stable incoherent state.

As applied to neural networks, the act-and-wait al-
gorithm is formulated as follows (see [20] for details). It
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is assumed that only mean field of the network is avail-
able for observation and only homogeneous perturba-
tions are allowed. The latter condition means that all
units of the network can be acted only equally. These
assumptions allow us to implement the method with
a single electrode. The algorithm involves the periodic
repetition of two stages. In the first (wait) stage, the
mean field of the control-free population is registered
and recorded in a memory, and in the second (act)
stage, the memorized signal is fed back to the system.
In fact, this algorithm utilizes a time-delayed feedback
with the periodically switched on and off feedback gain.
The control force is proportional to the product of the
mean field delayed by a period τw and the Tc-periodic
act-and-wait switching function

G(t) =
{

0, 0 ≤ t < τw

1, τw ≤ t < τw + τa = Tc,
(11)

where τa and τw are the durations of act and wait
stages, respectively. For real neural networks it is im-
portant to avoid an overlap of the registration and stim-
ulation processes, since the stimulation current typi-
cally exceeds the measured neuronal current by several
orders of magnitude and reliable registration of neu-
ronal activity in the presence of simultaneous stimu-
lation is impossible [47]. In order to ensure that the
stimulation is performed by a signal registered from
the control-free system, we have to require that the
act period is less or equal to the wait period τa ≤ τw.
The latter inequality is superior from the mathemati-
cal point of view as well, since it allows us to treat the
controlled system as a finite-dimensional one, despite
the fact that the time-delayed feedback is usually asso-
ciated with an infinite-dimensional phase space [30–32,
20]. In this paper, we restrict ourselves to the case of
equal act and wait durations τw = τa ≡ τ . Then the
period of act-and-wait switching is Tc = 2τ and the
2τ -periodic function (11) can be presented as

G(t) = H [− sin(πt/τ)] , (12)

where H(·) is the Heaviside step function.
In what follows, we verify the efficacy of the act-

and-wait algorithm for eliminating synchronization in
bistable networks described above (see Sec. 2). We present
the results only for the first three models. The last
model is omitted, since it turned out that this algorithm
is inefficient for the scale-free networks. Nonetheless, in
Sec. 4 we will show that the bistable scale-free networks
can be effectively controlled by the MCR algorithm.

3.1 Kuramoto model with positive and negative
couplings

In the presence of the act-and-wait control, the Ku-
ramoto model Eqs. (3) transform to

θ̇j = ωj + Im
[
(KjR− PG(t)Rτ ) e−iθj

]
(13)

for j = 1, . . . , N . Here the additional term PG(t)Rτ
stands for the act-and-wait control force, where P is
the feedback strength, G(t) is the periodic function de-
fined by Eq. (12) and the subscript τ in Rτ denotes
the time-delayed value Rτ ≡ R(t− τ). The form of the
control term is derived from a model of coupled and
stimulated Stuart-Landau oscillators in the assumption
that only mean field is available for the measurement
and the control perturbation is applied homogeneously
(cf. Ref. [20]).

The results of successful elimination of synchroniza-
tion in system (13) consisting of N− = 1500 contrarians
and N+ = 3500 conformists are presented in Fig. 5. The
blue (dark) curve in panel (a) shows the dynamics of
the order parameter (2). For t < 100, the control per-
turbation is off, P=0. The initial conditions are chosen
such that the bistable system settles to the synchro-
nized state. In this state, the order parameter fluctu-
ates around the value |R| = 0.31. The contrarians and
conformists crowd into two diametrically opposed clus-
ters whose phases are separated by the angle π. This
is evident from the dynamics of the phase distribution
shown in panel (b). For 100 < t < 200, the act-and-wait
control algorithm with the strength P = 2 is activated.
We see that the act-and-wait feedback perturbation de-
stroys the coherent clustered state. However, the feed-
back perturbation is constructed in such a way that it
does not destroy the incoherent state of the system, and
what is more this state remains stable in the presence
of control. The feedback seemingly makes the incoher-
ent state the only attractor of the system and because
of that it settles to this state after a short transient pe-
riod. As a result the value of the order parameter falls
to zero and the phase distribution becomes uniform.
For t > 200, the control force is switched off, P = 0.
Since the control-free system is bistable, it remains in
its stable incoherent state in the absence of control.

The system (13) admits an analytical treatment and
essential simplification in the thermodynamic limit of
infinite number of oscillators, N → +∞. Using the
Ott-Antonsen ansatz [48] with the assumption that the
natural frequencies ωj satisfy the Lorentz distribution
(4), system (13) can be reduced to only two differential
equations (cf. [37,20]):
ṙ1 = κ1(R∗ −Rr2

1)/2− (iω0 −∆)r1 + F1, (14a)
ṙ2 = κ2(R∗ −Rr2

2)/2− (iω0 −∆)r2 + F2, (14b)
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Fig. 5 Elimination of synchronization by act-and-wait control
in the Kuramoto model (13) for N = 5000, p = 0.7, ω0 = 0,
∆ = 0.05, κ1 = −3 and κ2 = 1. For t < 100, the system
is control-free (P = 0), in the interval 100 < t < 200 the
act-and-wait control is on with P = 2 and τ = 0.2 and for
t > 200, the system is again control-free. (a) Blue (dark) curve
shows the absolute value of the order parameter computed from
the system (13) while red (light) curve shows the same result
obtained from the reduced system (14). (b) Dynamics of the
phase distribution of Eqs. (13). The values of the phase density
are encoded by colors (Color figure online)

where r1 and r2 are the complex order parameters of the
contrarian and conformist subpopulations, respectively
and

F1,2 = −PG(t)(R∗τ −Rτr2
1,2)/2 (15)

are the act-and-wait feedback forces. The total order
parameter (2) is related to this parameters via a simple
algebraic expression

R = (1− p)r∗1 + pr∗2 . (16)

To verify the validity of the reduced system (14), we
have computed the dynamics of the order parameter
using Eqs. (14) with the same conditions as above. The
result is depicted in Fig. 5 (a) by the red (light) curve.
We see that this curve is close to the blue (dark) curve
obtained by direct simulation of the original system
(13).

The reduced system (14) is computationally much
more efficient than the original system (13) and can be
used to investigate the performance of the act-and-wait
algorithm in more details. In Fig. (6) we show how the
control performance depends on the choice of the cou-
pling strength P and the delay time τ . For a given pair
of the parameters (P, τ), we took the initial conditions
at the synchronized state and applied for some period of
time the act-and-wait control. Then we switched off the
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Fig. 6 Domain of successful elimination of synchronization
in the plain of parameters (P, τ) for the Kuramoto model with
positive and negative couplings estimated from the reduced sys-
tem (14). The mean absolute values of the order parameter
computed after application of act-and-wait control are encoded
by colors. The values of the parameters are the same as in Fig. 5
(Color figure online)

control and computed the mean absolute value of the
order parameter in the post transient regime. These val-
ues encoded by colors are depicted in the plane (P, τ)
in Fig. (6). In this figure, the colored region corresponds
to the domain of successful control. We see that the in-
crease of the delay τ narrows the range of the strength
P where the act-and-wait control is effective. Also, the
increase of the strength P narrows the range of τ where
the elimination of synchronization is successful.

3.2 Synaptically coupled FitzHugh-Nagumo neurons

The act-and-wait control algorithm works well for rather
complicated systems. Here we show that it can elimi-
nate synchronization in a noisy system of synaptically
coupled FHN neurons introduced in Sec. 2.2. Assuming
that only the mean field is available for the measure-
ment and only homogeneous perturbations are allowed,
the control current in the model (5) can be written as

Icon(t) = G(t)PV (t− τ), (17)

where G(t) is the periodic function (12), P is the feed-
back strength and V (t − τ) is a time-delayed value of
the mean field (7).

Figure 7 demonstrates the results of successful elim-
ination of synchronization in the network (5) consist-
ing of N = 5000 neurons, a half of which is coupled
inhibitory and another half is coupled excitatory. We
show the dynamics of the mean fields V (t), Vinh(t) and
Vexc(t). Without control (t < 2000), the network is in
the synchronized state; here all mean fields exhibit al-
most periodic oscillations with large amplitude. In the
time interval 2000 < t < 5000, the act-and-wait control
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Fig. 7 Elimination of synchronization by act-and-wait con-
trol in the network of synaptically coupled FHN neurons (5) for
N = 5000 and p = 0.5. V denotes the mean field of the whole
population, while Vinh and Vexc are the mean fields of inhibitory
and excitatory coupled subpopulations. For t < 2000, the sys-
tem is control-free (P = 0), in the interval 2000 < t < 5000,
the act-and-wait control is on with P = 0.2 and τ = 71 and for
t > 5000, the system is again control-free

is activated with the strength P = 0.2 and the delay
time τ = 71, chosen close the period of oscillations of
the mean field of control-free system. We see that the
control decreases the amplitudes of variations of the
mean fields. For t > 5000, the control is switched off
and the system settles to the stable incoherent state.
Note that the amplitudes of oscillations are higher dur-
ing the control than after the control is turned off. This
means that at the end of the control the system state
does not reside exactly in the incoherent attractor, but
it enters its basin of attraction.

3.3 Network of chaotic Rulkov neurons

As a last example demonstrating the efficacy of the act-
and-wait control algorithm, we consider elimination of
synchronization in the network of chaotic Rulkov neu-
rons (8). Here we take the same form of the control
current as in the network of FHN neurons

Icon(t) = G(t)PX(t− τ) (18)

with the only difference that the time t and the delay
time τ are now discrete.

The results of successful elimination of synchroniza-
tion for the network consisting of N+ = 14000 posi-
tively and N− = 6000 negatively coupled neurons are
presented in Fig. 8. We show the dynamics of the unit
x1(t) as well as of the mean fields X(t), X−(t) and
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Fig. 8 Elimination of synchronization by act-and-wait control
in the network of chaotic Rulkov neurons for N = 20000 and
p = 0.7. The panels show, from top to bottom, the dynamics
of the unit x1, and of the mean fields X, X− and X+. For
t < 2000, the system is control-free (P = 0), in the interval
2000 ≤ t ≤ 4000 the act-and-wait control is on with P = 0.025
and τ = 7 and for t > 4000, the system is again control-free

X+(t). For time t < 2000, the control is off and the sys-
tem is in synchronized state. Here the individual neu-
rons display chaotic bursting (the top panel), while the
mean fields show rather regular low-frequency oscilla-
tions with a large amplitude. When the act-and-wait
control is activated (2000 ≤ t ≤ 4000), the amplitudes
of the mean fields quickly decay, while the dynamics of
individual units little change. The individual neurons
do not produce macroscopic oscillation since they burst
incoherently. After switching off the control (t > 4000)
the system remains in the incoherent state.

4 Eliminating synchronization via a multisite
coordinated reset stimulation

The MCR stimulation was introduced in Ref. [13] as a
nonfeedback algorithm for suppression synchronization
in monostable neural networks that possess a stable co-
herent and an unstable incoherent state. Here we test
the ability of this algorithm to eliminate synchroniza-
tion in bistable oscillatory networks.

Unlike to the act-and-wait control algorithm, the
MCR stimulation uses inhomogeneous perturbations and
in neural networks is implemented by means of sev-
eral electrodes, which can act independently on dif-
ferent sites of neural population. The main idea be-
hind the method is to apply to the electrodes periodic
signals with shifted phases. When there are M elec-
trodes the phase shifts are uniformly distributed in the
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interval (0; 2π) with the step 2π/M . In this way, the
electrodes entrain subpopulations of neurons, so that
M synchronous clusters are formed. When the stimu-
lation is switched off, the clusters desynchronize. Af-
ter some time the population synchronizes to the one-
cluster states again, and stimulation should be switched
on again, and so forth. Since the method is nonfeedback
it cannot hold a monostable network exactly in its un-
stable incoherent state, but by periodic switching on
and off the stimulation one can partially suppress the
synchronization.

When controlling the bistable networks by MCR al-
gorithm, we do not need to periodically switch on and
off the stimulation. Below we show that synchronization
can be eliminated by only single switched on and off
cycle. Note that the coordinated reset may be achieved
by means of a high-frequency pulse train [13] or using
a soft stimulation [12] with the frequency close to the
mean frequency of the network. Here we use the latter
approach.

The MCR stimulation is robust against variations
of model parameters and is insensitive to the specific
topology of the network. Among others, here we show
that it works well for a bistable scale-free network.

4.1 Kuramoto model with positive and negative
couplings

First we verify the performance of the MCR stimulation
algorithm for the Kuramoto model (3). In the presence
of the MCR stimulation this model reads:

θ̇j = ωj + Im
[(
KjR+ aei(Ωt+φ

(m)
j

)
)
e−iθj

]
(19)

for j = 1, . . . , N . Here the amplitude a and the fre-
quency Ω of the MCR stimulation are equal for all
units of the network, while the phases φ(m)

j are dif-
ferent. We assume that in the case of M electrodes,
each of them stimulates independently N/M different
units of the network. The phase shifts of periodic signals
applied to the electrodes are chosen as 2π(m − 1)/M ,
where m = 1, . . . ,M is the number of the electrode.
In this way the whole population is split into M dis-
tinct clusters related to the different stimulation sites,
respectively. For all oscillatory units with the index j
belonging to the mth cluster, the stimulation phase is
φ

(m)
j = 2π(m−1)/M . In our numerical simulations, the

units are randomly assigned to the different clusters.
We tested the MCR stimulation algorithm withM =

4 for the network (19) consisting of N− = 1500 con-
trarians and N+ = 3500 conformists. In Fig. 9, the
panels (a) and (b) show the dynamics of the order pa-
rameter (2) and of the phase distribution, respectively.
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Fig. 9 Elimination of synchronization by MCR stimulation
in the Kuramoto model (19) for N = 5000, p = 0.7, ω0 = 0,
∆ = 0.05, κ1 = −3 and κ2 = 1. For t < 200, the system is
control-free (a = 0), in the interval 200 < t < 300 the MCR
stimulation is on with M = 2, a = 0.3 and Ω = 0 and for
t > 300, the system is again control-free. (a) Blue (dark) curve
shows the absolute value of the order parameter computed from
the system (19) while red (light) curve shows the same result
obtained from the reduced system (20). (b) Dynamics of the
phase distribution of Eqs. (19) (Color figure online)

For t < 200, the control-free system is in the synchro-
nized regime in which contrarians and conformists are
crowded into two opposed clusters. For 200 < t < 300,
the MCR stimulation is switched on and the network
resynchronizes according to the applied signals so that
that phases of the oscillators are spread into new four
uniformly distributed clusters separated by the angle
π/2 with equal proportion of the oscillators in each clus-
ter. Note that the contrarian and conformist oscillators
are now mixed in each of the clusters. The state re-
sulting from the MCR stimulation has more uniform
phase distribution as compared to the initial synchro-
nized state and thus it should be closer to the incorrect
state in the phase space of the free system, since the
latter is characterized by the uniform distribution of
phases. This explains why the state resulting from the
MCR stimulation appearers to lie in the basin of at-
traction of the incoherent attractor of the free system
and why the system approaches this attractor when the
stimulation is switched off (t > 300). We see that after a
short transient period the phase distribution becomes
totally uniform and the order parameter almost van-
ishes.

In the thermodynamic limit N →∞, the Kuramoto
model (19) under MCR stimulation can be reduced by
Ott–Antonsen ansatz [48] to only 2M differential equa-
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tions:

ṙ1,m = κ1

2 (R∗ −Rr2
1,m)− (iω0 −∆)r1,m + F̄

(m)
1 , (20a)

ṙ2,m = κ2

2 (R∗ −Rr2
2,m)− (iω0 −∆)r2,m + F̄

(m)
2 (20b)

for m = 1, . . . ,M . Here r1,m and r2,m are the complex
order parameters of the contrarian and conformist sub-
populations, respectively, which are stimulated with the
periodic signal having phase shift φ(m) = 2π(m−1)/M .
The stimulation force in system (20) reads:

F̄
(m)
j = −a2

(
e−i(Ωt+φ

(m))r2
j,m − ei(Ωt+φ

(m))
)

(21)

for j = 1, 2 and m = 1, . . . ,M . The order parameter of
the whole network can be computed as

R =
M∑
m=1
{(1− p)r∗1,m + pr∗2,m}. (22)

In Fig. 9 (a), we compare the dynamics of the abso-
lute value of the order parameter computed from the
reduced system (20) (red/light curve) with that ob-
tained by direct simulation of the original system (19)
(blue/dark curve). The good coincidence of the above
results means that the reduced system approximates
well the dynamics of large networks of the Kuramoto
oscillators in the presence of MCR stimulation.

4.2 Synaptically coupled FitzHugh-Nagumo neurons

The MCR stimulation current in the model (5) of synap-
tically coupled FHN neurons has the form

Icon(t) = a cos(Ωt+ φ
(m)
j ), (23)

where φ(m)
j = 2π(m − 1)/M is the phase of the stim-

ulation signal coming from the m th electrode to the
jth neuron. The results of successful elimination of syn-
chronization in the network (5) consisting of N = 5000
neurons are presented in Fig. 10. The algorithm works
well, although here we used only two (M = 2) stimula-
tion electrodes.

4.3 Network of chaotic Rulkov neurons

For the network of chaotic Rulkov neurons (8), we use
the same form of the control current as for the network
of FHN neurons

Icon(t) = a cos(Ωt+ φ
(m)
j ) (24)

with the only difference that the time t is now a discrete
variable. In Fig. 11 we demonstrate an example of suc-
cessful elimination of synchronization in the network
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Fig. 10 Elimination of synchronization by MCR stimulation
in the network of synaptically coupled FHN neurons (5). The
parameters of the network are the same as in Fig. 7. For t <
5000, the system is control-free (a = 0), in the interval 5000 <
t < 10000 the MCR stimulation is on with M = 2, a = 0.1 and
Ω = 2π/74 and for t > 10000, the system is again control-free
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Fig. 11 Elimination of synchronization by MCR stimulation
in the network of chaotic Rulkov neurons for N = 30000 and
p = 0.7. For t < 2000, the system is control-free (a = 0), in the
interval 2000 ≤ t ≤ 4000 the MCR stimulation with M = 3,
a = 0.02 and Ω = 2π/60 is switched on and for t > 4000, the
system is again control-free

consisting of N = 30000 neurons. We used the MCR
algorithm with three (M = 3) stimulation electrodes.
As well as in Fig. 8, we show the dynamics of four pa-
rameters x1(t), X(t), X−(t) and X+(t). For t < 2000,
the control-free system is in synchronized regime. For
2000 ≤ t ≤ 4000, the MCR stimulation is activated and
then for t > 4000 it is switched off. As a result, the net-
work settles to the stable incoherent state where only
small fluctuations of the mean fields X(t), X−(t) and
X+(t) are observed.
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4.4 Scale-free network of phase oscillators

The MCR stimulation approach goes beyond the model
of globally coupled populations and admits some spa-
tial structure of the network. Here we demonstrate its
efficacy to eliminate synchronization in the scale-free
network (10). To this end, we add to the Eqs. (10) the
MCR stimulation term of the same form as for the Ku-
ramoto model with positive and negative couplings (see
Eqs. (19)):

θ̇j = ωj +K

N∑
l=1

ajl sin(θl − θj) + a sin(Ωt+ φ
(m)
j − θj)

(25)

The results of numerical simulation of the network (25)
are presented in Fig. 12. The coupling strength K is
chosen equal to 6 and the other parameters of the net-
work are the same as in Sec. 2.4. The panel (a) shows
the dynamics of the order parameter, while the panel
(b) displays an evolution of the phase distribution. For
t < 40, the control-free network is in the synchronized
state, then for 40 < t < 50, the MCR stimulation with
M = 4, a = 10 and Ω = 2π is switched on, and for
t > 50 it is switched off. As a result the system settles
to the stable incoherent state. The success of control
can be again explained by the fact that the MCR stim-
ulation produces the state with rather uniform phase
distribution, which falls within the basin of attraction
of the incoherent attractor of the free system.

5 Conclusions

In this paper, the problem of controlling synchroniza-
tion in bistable oscillatory networks has been consid-
ered. We have shown that the bistability effect is char-
acteristic not only for the Kuramoto-type models, but
also for a network of chaotic Rulkov neurons connected
through the mean field with positive and negative cou-
pling coefficients as well as for a stochastic model of
synaptically all-to-all coupled FitzHugh-Nagumo neu-
rons with excitatory and inhibitory interaction. All these
systems have coexisting stable coherent and incoher-
ent states in a certain range of parameters. In order
to switch a bistable network from the stable coherent
state to the stable incoherent state, we have suggested
and tested two different algorithms. Both of them take
into account constraints typical for real-world neural
networks; they satisfy the requirement that the control
and measurements of the system are available only on
a macroscopic level.

The first, act-and-wait control algorithm, is based
on periodic repetition of two stages. In the first stage,
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Fig. 12 Elimination of synchronization by MCR stimulation
in the scale free network (25) consisting of N = 1000 oscillators
with coupling strengthK = 6. Other parameters of the network
are the same as in Fig. 4. For t < 40, the system is control-free
(a = 0), in the interval 40 < t < 50 the MCR stimulation is
on with M = 4, a = 10 and Ω = 2π, and for t > 300, the
system is again control-free. (a) Dynamics of the absolute value
of the order parameter. (b) Evolution of the phase distribution
of Eqs. (25). Note different scales of time in panels (a) and (b)
(Color figure online)

the mean field of the free system is measured and re-
corded, while in the second stage, all units of the net-
work are homogeneously forced by the recorded signal.
In fact, this algorithm uses a time delayed feedback
with periodically switched on and off feedback gain.
The feedback is constructed in such a way that it pre-
serves the stable incoherent state of the system but
destroys its coherent state. We have shown that this
algorithm is efficient for networks with all-to-all cou-
pling topology. The advantage of this algorithm is that
it can be implemented in neural networks by a single
electrode.

The second algorithm is based on multisite coordi-
nated reset stimulation. This algorithm is nonfeedback
and does not require online measurements of the sys-
tem state. However, the algorithm uses inhomogeneous
perturbations and its implementation requires several
electrodes. Different sites of the network are stimulated
through the electrodes by periodic signals with shifted
phases. As a result a multicluster synchronous state
with uniformly scattered phases is formed. We have
shown by examples that such a state lies in the basin of
attraction of the incoherent attractor of the free system,
so that after switching off the stimulation the network
approaches the incoherent state. The main advantage of
this approach is that it works well not only for networks
with all-to-all coupling topology but is applicable for
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more complex networks as well. We have demonstrated
its capability to eliminate synchronization in a bistable
network with a nontrivial scale-free topology.
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