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Search for optimal signals to suppress synchronization in oscillatory networks
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Summary. We analyse a possibility to suppress the synchronization in oscillatory network via an external time-dependent force
without the use of a feedback. The force is presented by a harmonic signal with the frequency equal to the center of natural frequencies
distribution of the network’s oscillators and the amplitude modulated by a periodic function with the different frequency. We formulate
a variational problem to look for an optimal profile of this periodic function. The order parameter is taken as a criterion of the
synchronization. We require the minimal value of the mean order parameter provided the mean power of the external force is fixed.
Using a network of globally coupled Kuramoto oscillators we show that a smooth modulation signal satisfying the variational problem
with the above constraints does not effectively suppress the synchronization, while a periodic switch on and off of the external force (a
non-smooth modulation function) is considerably more effective.

Introduction

Synchronization is a phenomenon when weakly interacting oscillators adjust their intrinsic frequencies. Investigation of
synchronization in large populations of interacting oscillatory elements is an intensively developing branch of nonlinear
science, relevant to many problems of physics, chemistry, and biology, in particular, to neuroscience. Synchronization
of individual neurons is believed to play the crucial role in the emergence of pathological rhythmic brain activity in
Parkinson’s disease, essential tremor, and epilepsies. The development of techniques for suppression of the undesired
neural synchrony constitutes a challenging problem important from the standpoint of clinical applications [1]. Here our
aim is to investigate the possibility to suppress synchronization in oscillatory networks via an external time-dependent
force without the use of the feedback.

Problem formulation

As a model of interacting oscillatory elements we consider the Kuramoto equations [2]:

θ̇j = ωj +
K

N

N∑
k=1

sin(θk − θj) +A(t) sin(ω0t− θj). (1)

Here θj and ωj are respectively the phase and natural frequency of the j’th oscillator with j = 1, . . . , N , where N is
the number of oscillators in the network. We assume that the frequencies ωj are randomly chosen from a Lorentzian
probability density

g(ω) =
∆

π[∆2 + (ω − ω0)2]
, (2)

where ω0 is the center and ∆ is the width of the distribution. The oscillators are globally coupled by the mean field with
the strength K. The last term in Eq. (1) represents a harmonic force applied to all oscillators with the mean frequency ω0

and periodically modulated amplitude A(t). We use the standard synchronization criterion defined by the complex order
parameter

r(t) =
1

N

N∑
j=1

exp (ıθj(t)). (3)

The absolute value |r| of this parameter varies in the interval [0, 1] and measures the phase coherence in the population.
The small values of |r| indicate the incoherent state while values close to 1 represent the strong mutual synchronization.
In the limitN → +∞, the order parameter satisfies the ordinary differential equation of the form (here we use the rotating
coordinate system, i.e. replace r(t) by r(t) exp(ıω0t)) [3]

ṙ = −1

2
r2 (Kr∗ +A(t)) +

1

2
(Kr +A(t))− r∆, (4)

where r∗ means the complex conjugate of r. This equation can be rewritten into the rectangular coordinate system
r = x + ıy from where we obtain that y = 0 is a steady state solution independently of A(t) profile. The real part of
the order parameter x has no steady state solution. However, if we chose A(t) periodic with a period T then the real
part of Eq. (4) has a periodic solution with the same period T : x(t) = x(t + T ). We say that solution (x(t), 0) is stable
when its infinitesimal perturbations (δx(t), δy(t)) vanishes for t→∞. Therefore, in order to reduce the synchronization
level in the system we need to minimize |x| variation through the period T taking into account the solution’s stability
requirement. Also we need to add a restriction to the amplitude of the external force

∫ T

0
A2(t)dt = W = const,

otherwise the minimization problem will give us the force with an infinite power. Mathematically, the problem can be
stated as a minimization of the functional

J [x] =

∫ T

0

x2(t)dt, (5)

with the above mentioned constraints.
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Figure 1: (a) Amplitude modulation signal obtained from solution of the Euler-Lagrange equations. (b) Comparison of the absolute
value of order parameter obtained from Eqs. (1) (red curve) and Eqs. (4) (blue curve) with A(t) shown in panel (a). Black curve
represents a moving average of the order parameter with averaging period equal to T = 9.4. The value of the parameters are:
N = 10000, K = 0.5, ω0 = 0.1π, and ∆ = 0.1.

Figure 2: The same as in Fig. 1, but now the external force is turned off A(t) = 0 for intervals Toff = 6.5.

Results

The solution of the variational problem by the Euler-Lagrange method leads to the system of two nonlinear ordinary
differential equations for x(t) and A(t) functions. Solving this system with the periodicity conditions we obtain a family
of curves A(t) corresponding to the different values of the mean power W/T of the force. Comparing these solutions we
can select the solution with the minimal power. Panel (a) of Fig. 1 shows an amplitude modulation signal A(t) obtained
from the solution of the Euler-Lagrange equations, while panel (b) demonstrates the dynamics of the order parameter with
the given periodic signal A(t). The dynamics of the order parameter obtained directly from the Kuramoto model (1) (red
curve) and Eqs. (4) (blue curve) practically coincide. We see that the order parameter vanishes two times per period T ,
i.e. the external force totally desynchronize the the system two times per period. However, the mean value of the order
parameter remains rather large 〈|r|〉 ≈ 0.7; it is comparable with the order parameter of the free system |r| ≈ 0.77 for
the given value of K = 0.5. To reduce the mean value of the order parameter we can switch off the external force at the
moments when the order parameter is close to zero. However, the free system does not remain in the desynchronized state
a long while, since the fixed point r = 0 of the free system (4) is unstable. Nevertheless, we can switch off the external
force for some interval Toff and than switch it on again. The allowable length of Toff interval is restricted by the stability
condition of the given solution. The non-smooth periodic signal A(t) with zero values in Toff intervals is shown in panel
(a) of Fig. 2. Panel (b) shows the results of application of this signal to the Kuramoto system. Now the averaged value
of the order parameter 〈|r|〉 ≈ 0.4 is considerably reduced in comparison to the corresponding value of the free system.
Therefore the non-smooth intermittent signals are more effective for the suppression of synchronization.
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