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We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which
represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous;
they include both inherently spiking and excitable neurons. The coupling within and between the populations
is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed
reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron’s firing
rates and the mean membrane potentials in both populations. The reduced equations are exact in the infinite-size
limit. The bifurcation analysis of the equations reveals a rich variety of nonsymmetric patterns, including a splay
state, antiphase periodic oscillations, chimera-like states, and chaotic oscillations as well as bistabilities between
various states. The validity of the reduced equations is confirmed by direct numerical simulations of the finite-size

networks.
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I. INTRODUCTION

Studies of collective motion in networks of nonlocally or
globally coupled oscillators or excitable elements are the focus
of current research in diverse fields from physics to neuro-
science. Starting from pioneering works of Winfree [1] and
Kuramoto [2] various striking effects such as synchronization,
collective chaos, and chimera states have been detected [3].

The existence of chimera states was first reported by Ku-
ramoto and Battogtokh [4]. They considered a ring of identical
nonlocally coupled oscillators and showed that they could
spontaneously split into synchronized and desynchronized
subpopulations. Though the oscillators were coupled symmet-
rically and the system possessed a translational symmetry, for
the chimera states this symmetry was broken. By now chimera
states have been detected and analyzed in diverse systems
with different types of topology, various types of oscillators,
and different types of couplings. For a recent review of the
subject see Ref. [5].

A major breakthrough in an analytical treatment of chimera
states was achieved by Abrams et al. [6]. They considered the
simplest setup that supports chimera states: a pair of oscillator
populations in which each oscillator is coupled equally to all
the others in its group, and with different strength to those in
the other group. Such a system is symmetric with respect to
exchange of populations, and here chimera states represent the
symmetry-broken solutions with the coherent and incoherent
behavior of oscillators in different populations. The authors
solved the problem in the infinite-size (thermodynamic) limit
by applying Ott and Antonsen ansatz [7]. They derived a simple
system of two ordinary differential equations that characterize
the macroscopic dynamics of the network and obtained the
exact results about the stability, dynamics, and bifurcations of
chimera states. Inspired by Ref. [6], different authors employed
the setup with two globally coupled populations to analyze
chimera states in a large variety of models [8—14].

Chimera states are of particular interest in neural models
[12-23]. Many creatures like birds, reptiles, and sea mammals
sleep with only half their brain at a time [24]. In such
a unihemispheric sleep the awake side of the brain shows
desynchronized electrical activity, whereas the sleeping side
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is highly synchronized. The authors of Ref. [6] suggested that
chimera states in two coupled neural populations might serve
as a model of unihemispheric sleep. An asymmetric brain
activity has been also observed in human sleep apnea patients
[25]. Thus the study of neural chimera states may have clinical
relevance as well.

In this paper, we analyze two globally coupled populations
of quadratic integrate-and-fire (QIF) neurons. The isolated
QIF neuron is the canonical model for the class I neurons
near the spiking threshold [26,27]. The spiking instability
in such neurons appears through a saddle-node bifurcation
on an invariant curve (SNIC), in which a pair of fixed
points on a closed curve coalesce to disappear, converting
the curve to a periodic orbit. The peculiarities of our model are
as follows. Unlike typical models, which consider chimera
states in systems of identical oscillators, here we analyze
two populations of heterogeneous neurons. Each population
contains both excitable and spiking neurons. The interactions
between neurons are provided either by synaptic coupling or by
mean field potential. Our model admits an analytical treatment
via a recently developed Lorentzian ansatz (LA) method
[28,29]. In the thermodynamic limit, we derive a simple
system of ordinary differential equations, which describe the
macroscopic dynamics of the firing rates and mean membrane
potentials in both neural populations. This macroscopic model
enables us to perform a thorough bifurcation analysis of the
system. As a result, we detect two types of chimera-like
states. In one of them, the majority of neurons in one
population are quenched, while in another population they
spike synchronously. In the second type, the majority of
neurons produce spikes in both populations, but with a different
synchronization level.

The paper is organized as follows. The microscopic model
of two synaptically coupled populations of QIF neurons and
derivation of macroscopic model equations in the thermody-
namic limit is described in Sec. II. Section III is devoted to the
stability analyzes of symmetric solutions of the macroscopic
model. The analysis of nonsymmetric solutions and their
bifurcations is presented in Sec. IV. In Sec. V we consider
the case when the coupling between populations is defined by
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a mean field potential rather than the synaptic interaction. The
paper is concluded by discussion in Sec. VI.

II. THE MODEL

Our consideration of two neural populations is based on
the heterogeneous model of all-to-all synaptically coupled
quadratic integrate-and-fire neurons, which are the canonical
representatives for a class I neurons near the spiking threshold.
One such population has been thoroughly studied in Ref. [29].
The membrane potential of each neuron V;, (here 1 < j < N,
N is the size of the population) is described by the following
equation [30]:

Vi=Vitn + 1 (1)

Here the constants n; specify the behavior of individual
neurons. For n; < O the neuron is in an excitable regime,
and for n; > 0 1itis in the spiking regime. We assume that the
values of the parameters 7; are distributed according to some
defined density function g(#) and that system (1) contains both
excitable (n; < 0) and spiking neurons (1; > 0). Whenever
the membrane potential V; reaches the peak value Vpeqx its
voltage is reset to the value Vies. In order to treat the system
(1) analytically, the peak and reset voltages are set to infinity
Vpeak = —Vieser = 00.

The term ;" stands for the synaptic current. We assume
all-to-all homogeneous neural coupling and write this term in
the form

N
, 1
"= —K(V; - Vo > s ()
=1

Here K is the maximal conductance of postsynaptic receptors,
and V; is the reversal potential of synapse. In the case of
fast synaptic processes, the fraction of open ion channels in
the neuron membrane is described by a sigmoid function,
s; = {1 +exp[—o(V; — Vip)])~!, with steepness parameter o
and threshold potential Vy,. This oft-used coupling form is
called fast threshold modulation [31]. We consider the limiting
version 0 — 0, when the sigmoid function transforms into
the Heaviside step function, s; = H(V; — V). Moreover, to
reduce the number of parameters, we consider the limit
Vs — oo and K — 0 with the product K V; remaining finite.
Then by defining the new parameter J = K V;/ Vy,, we obtain
the simplified expression for the synaptic current that does not
depend on the index j, I;yn = [

N
Vin
" = J— H(V; — V). 3
N; (Vi = Vin) 3)

This expression is a good approximation for small excitatory
synapses on a large compartment [32]. In that case, the depo-
larization of the membrane is small, and the difference V; — V;
is little changed during the excitatory postsynaptic potential.
Note that the latter approximation is not necessary for the
analytical treatment of the model. The reduced system of
macroscopic equations for the neuron’s firing rate and the mean
membrane potential can be derived in the thermodynamic
limit without recourse to this approximation [29]. However,
below we will use this approximation, since it simplifies the
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bifurcation analysis of the macroscopic equations. Moreover,
as shown in Ref. [29], the bifurcation diagrams obtained with
the synaptic currents (2) and (3) are qualitatively similar. In
both cases the model demonstrates a large variety of dynamical
regimes, including a single steady state solution, bistability
between two different steady states, and macroscopic self-
oscillations as well as bistability between the steady state and
self-oscillations.

In this paper we consider two interacting populations of
neurons of the described type

Vik =V} +n; + L 4)

We assume that the populations are identical. The index
j=1,...,N labels the neurons inside each population,
while the index k& = 0,1 marks the populations. The term
Ti describes both the interaction between the neurons inside
each population and between the populations. In this paper we
mainly focus on the analysis of the situation when the internal
and external interactions between neurons are modeled by the
synaptic current in the form (3). The expression for term 7 in
this case is

Tk = (JinSk + JexS1-1) Vin, (5)
where
|
Sk= ; H(Vii = Vi) ©)

and the parameters J;, and Jx define the coupling strengths
within and between the populations, respectively. In Sec. V,
we briefly describe another situation, when the interaction
between the populations is provided by a mean field coupling
rather than the synaptic coupling.

Thermodynamic limit

In the thermodynamic limit N — oo, the system (4) of two
interacting neural populations can be reduced to a system of
only four ordinary differential equations, which defines the
dynamics of firing rates and mean membrane potentials of
individual populations. Such macroscopic equations can be
derived by a recently developed reduction method based on
the Lorentzian ansatz. The idea of this method has been first
proposed for a single network of QIF neurons interacting via
instantaneous pulses [28] and then extended to a more realistic
model of synaptic interaction that takes into account the finite
width of synaptic pulses [29]. The technique of the derivation
of the macroscopic equations for the system (4) is similar to
that described in Refs. [28] and [29], and thus we present this
derivation in abbreviated form.

In the infinite-N limit, the macroscopic state of each pop-
ulation in the system (4) can be described by continuous den-
sity functions px(V|n,t), k = 0,1. The product px(V|n,t)dV
defines the fraction of neurons in the kth population with the
membrane potential between V and V + dV and parameter
at time 7. These density functions satisfy continuity equations

a

9
— o = ——[pe{V? 7 7
a7 Pk 8V[pk{ + 1+ i}, @)

042212-2



SYMMETRY BREAKING IN TWO INTERACTING ...

where 7, is defined in Eq. (5). In the continuous limit, the sum
Sk defined in Eq. (6) becomes a double integral

+00 +00
Sk =/ g(n)/ p(VIn.OH(V — Va)dVdn. (8)

The main assumption of the LA ansatz is that the solutions of
Eqgs. (7), for any initial conditions, converge to a Lorentzian-
shaped function (see Ref. [28] for the relation between the LA
ansatz and Ott-Antonsen ansatz [7])

pVinn =~ il

’ 7 [V =y, 01 + xx(n,0)?
where time-dependent parameters xi(n,t) and yi(n,?) define
the half-width and the center of the distribution. The parame-
ters xx(n,t) and yx(n,t) characterize all relevant dynamics of
the system in a reduced subspace. They are related to the total
firing rate r(¢) and the mean membrane potential v(¢) via
integrals

9

1 +o00
ri(t) = ;/ xe(n,)g(n) dn, (10a)
+00
vk(t)=/ ye(m,0)g(n) dn. (10b)

Substituting the LA (9) into the continuity Egs. (7), one
can derive a system of differential equations for x;(n,t) and

yi(m,1):

(11a)
(11b)

xe(n,1) = 2x(n,)ye(n, 1),
(1) = n —x¢(n,1) + yEn,0) + I,

which for the complex variable wy(n,t) = xx(n,t) + iye(n,1)
can be written as

wk(n,1) = iln — wr(n.t) + I ]. (12)

A simplification can be gained by choosing the density
distribution of the  parameter in the Lorentzian function form

1 A
g =—

7 (n—)*+ A2 (13)

with the width A and the center at 7. In this case the integrals
(8) and (10) can be solved by extending 1 to the complex
plane and computing a contour integral over an infinitely large
semicircle in the lower half-plane [28]. The values of these
integrals are defined by the pole n = 77 — i A of g(n) function.
This enables us to relate the complex variable wy with the
firing rate and the mean membrane potential

wre(t) +ive() = wi(i —iALt) (14)

as well as obtain the explicit expression for the synaptic

function
T2 wr(t)

Taking into account Egs. (12) and (14), the firing rates and
the mean membrane potentials satisfy the system of four
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e = A/ + 2, (16a)

U = 7+ vp — g + T, (16b)
where k = 0, 1. These equations together with Egs. (5) and (15)
form the closed macroscopic model for the network consisting
of two synaptically coupled populations of QIF neurons.

III. SYMMETRIC SOLUTIONS AND THEIR STABILITY

The macroscopic Eqgs. (16) possess permutational sym-
metry: they are invariant under the change of variables
(r0,v0,71,v1) = (r1,v1,70,Vp). This symmetry admits the exis-
tence of the symmetric solutions (r1,v1) = (rg,vg). To analyze
the stability of such solutions, it is convenient to introduce new
variables

R = (ro —r1)/2, (17a)
P = (v —v1)/2. (17b)
0 = (ro+r)/2, (17¢)
M = (vo+ v1)/2, (17d)

where (R, P) and (Q,M) are the transverse and longitudinal
coordinates, respectively. In the new coordinates (R, P,Q, M),
the trajectories of the symmetric solutions are placed in the
invariant subspace (0,0, Q, M), where the variables Q and M
satisfy differential equations

0=A/m+20M, (18a)
M =7+ M —7*0% + (Jin + Je) Vi
1 Vih — M
x—|:z — arctan (th—)i| (18b)
T2 T Q

These equations are identical to the equations that describe
the dynamics of a single population of QIF neurons with a
modified coupling strength J = Ji, + Jex. The solutions of this
system have previously been analyzed in Ref. [29]. It has been
shown that the system (18) has two types of asymptotically
stable solutions: fixed points (steady states) and limit cycles.
For some values of the parameters, these solutions can coexist
in different combinations giving rise to the bistability. The
stable solutions of the system (18) constitute longitudinally
stable solutions of the system (16) in the invariant subspace
(0,0,0,M), while their transverse stability requires a special
analysis.

The transverse stability of the symmetric solutions is
defined by the variational equations of the (R, P) variables

SR SR
<5P> - A(ap) (19

_ M 0
A= 2(—:12Q 4 Su(M — V) M- SMQ) (20)

with the matrix
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FIG. 1. Stability diagram of the symmetric solutions of Egs. (16)
in the plain of parameters (Jex, Jin) for 7 =0, Vi =50 and A = 1.
The red diagonal indicates the Hopf bifurcation of the system (18).
Below this diagonal there are symmetric fixed points (SFP) and above
the diagonal symmetric limit cycles (SLC). In the white regions, these
symmetric solutions are transverse stable, while in the blue regions
they are unstable and here there are no symmetric attractors.

and the parameter

_ Vth(‘]ex - Jin)
C2[m2Q2 4+ (M — V)2l

The variables Q and M in Eqgs. (20) and (21) satisfy Egs. (18).
Equation (19) governs the dynamics of transverse deviations
(6R,6 P) from the invariant subspace. When these deviations
decay in time then the corresponding symmetric solution
defined by Eq. (18) is transverse stable, otherwise it is unstable.

The analysis of transverse stability of fixed points and
limit cycles is different. For the fixed points, the matrix A
is constant and its eigenvalues XA, define the stability. If
Rel;» < 0, the symmetric fixed point solution of the system
(16) is transverse stable. For the limit cycles, the matrix A
depends on time periodically, A(¢) = A(t + T), where T is the
period of the limit cycle. In this case we recourse to Floquet
theory. We solve differential equations for the fundamental
matrix ®(¢): () = A(¢)P(r) with the initial condition equal
to the identity matrix, ®(0) = 1. Then we compute the
eigenvalues 1t » of the monodromy matrix (7). If |y | < 1,
the symmetric limit cycle solution of the system (16) is
transverse stable. Note that the transverse stability of the
symmetric solutions depends on the difference Jox — Ji,, while
the solutions themselves are defined by the sum Jex + Jin.

In Fig. 1 we show the results of the above stability
analysis in the plain of parameters (Je,Jin). The values of
the parameters 77 = 0, Vi = 50 and A = 1 are chosen so that
the system (18) is monostable for any values of Jex + Jin. The
red diagonal line Jex + Jin = Jy in Fig. 1 indicates the Hopf
bifurcation of the system (18). For Jx + Jin < Jy =~ 14.7,
the only attractor of the system is the fixed point and for
Jex + Jin > Jg — a limit cycle. The white color in the
figure corresponds to the regions where the above symmetric
solutions are transverse stable. In the blue regions, these
solutions are transverse unstable, and thus here the system (16)
has no symmetric attractors. In the next section, we analyze
symmetry-broken solutions that appear in the blue regions of
Fig. 1.

Su 2L
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IV. NONSYMMETRIC SOLUTIONS AND BIFURCATIONS

The behavior of the interacting neural populations is
different for inhibitory (Jex < 0) and excitatory (Jex > 0)
couplings. Below we present the analysis of nonsymmetric
solutions for these two different cases in separate sections.

A. Inhibitory coupling

The bifurcation diagram of nonsymmetric solutions in
the region of parameters (Jex,Jin) relevant to the inhibitory
coupling between populations is shown in Fig. 2(a). Here as
well as in Fig. 1 the white area corresponds to monostable
symmetric states. In the colored region, there are nonsym-
metric attractors, while in the striped area the system exhibits
coupling-induced bistability. Here, depending on the initial
conditions, the system can approach either a symmetric or
nonsymmetric state.

The variation of the coupling strengths within and between
the populations leads to a rich variety of bifurcations, including
limit point (LP), Hopf (H), Neimark-Sacker (NS), limit point
of cycles (LPC), and period doubling (PD) bifurcations. In
Fig. 2(a) these bifurcations are shown by colored curves
marked with corresponding acronyms. A more detailed vi-
sualization of the bifurcations is given in the right-hand side
of Fig. 2. Here the local maxima ry"®* and r{"** of spiking rates
of different populations are shown as functions of a smoothly
varying coupling strength J. for three different fixed values
of Ji, = 10,16, and 20. These values are shown in Fig. 2(a) by
dotted horizontal lines.

For low coupling strength Ji, = 10, the noninteracting
populations (Jex = 0) have a symmetric fixed point attractor
with equal time-independent spiking rates ro = r; = const.
They are marked in Figs. 2(b) and 2(e) by red points. The
increase of the inhibitory coupling between the populations
results in symmetry breaking through a limit point bifurcation.
The symmetric fixed point attractor (red dots) exists in the in-
terval Jx € (—3.31,0). The nonsymmetric fixed point attractor
(black dots) with different stationary spiking rates in different
populations, ry # ry, is in the interval Ji € (—6,—2.35).
Following Ref. [12] we refer to this solution as a splay state.
The splay state is characterized by the absence of any collective
dynamics, since both the spiking rates and mean fields of
populations are constant. In the interval Jo, € (—3.31,—2.35),
the system exhibits bistability with coexisting symmetric and
nonsymmetric fixed point attractors.

More interesting symmetry breaking scenarios are observed
at higher coupling strength Ji, > Jy = 14.7, when the syn-
chronization between neurons within the isolated populations
(Jex = 0) causes macroscopic limit cycle oscillations of their
spiking rates and mean fields. In Figs. 2(c) and 2(f), we fix
Jin = 16 and continue the symmetric limit cycle solution to
the region Jox < O (green dots). With the increase of the
inhibitory coupling between the populations, the symmetry
of the limit cycle is conserved up to the value Jox = —0.76.
At this point the system undergoes the Neimark-Sacker
bifurcation. Further increase of the coupling strength |Je|
results in quasiperiodic oscillations, which then transform into
periodic oscillations and finally become the symmetric fixed
point attractor (red dots) following the Hopf bifurcation at

042212-4



SYMMETRY BREAKING IN TWO INTERACTING ...

(a) &pc /PD
NS
\
15 A —
N H
5 \ /
10
5 2
8 6 4 > 0
Jeaz

PHYSICAL REVIEW E 96, 042212 (2017)

4 8
b) (c) (d)
1 ( 1 )
| Z"/
2 ( i,
-
0 9 X
1 |(e) / (f) | |(e)
H 4
""" 2 4
0.5
0" 0 0 s
6 4 2 06 -4 20 6 -4 20

FIG. 2. (a) Two-parameter (Je,J;,) bifurcation diagram of the macroscopic model (16) for inhibitory coupling between populations at
fixed parameters ;7 = 0, Vy, = 50, and A = 1. The white, colored, and striped areas define, respectively, the monostable symmetric states, the
nonsymmetric attractors, and the bistable states of the system. Continuous curves of different color, marked by acronyms, represent bifurcations:
LP: limit point (black), H: Hopf (magenta), NS: Neimark-Sacker (green), LPC: limit point of cycles (red), and PD: period doubling (blue). The
right-hand side of the figure shows one-parameter bifurcation diagrams. They are constructed as a continuation of the solutions of Eqs. (16)
via gradual change of the parameter J.x from zero to —6 at three different fixed values of Ji,: 10 [(b) and (d)], 16 [(c) and (f)], and 20 [(d)
and(g)]. The latter values are presented in (a) by horizontal dotted lines. The crosses on these lines denote the values of the parameters at which
the dynamics of the system are demonstrated in the subsequent figures in more details. The black points in (b) and (e) as well as red points in
(b)-(f) show the stationary values of the spiking rates in different populations. The blue and the green points in (c)—(g) show the local maxima

of the oscillating spiking rates.

Jex = —3.15. This symmetric fixed point attractor disappears
via limit point bifurcation at J.x = —5.28. In addition to the
above solutions, the system has a nonsymmetric limit cycle
attractor presented by blue dots. The attractor appears via a
limit point cycle bifurcation at Jox = —2.41 and exists for
any Jex < —2.41. This solution is most interesting since it
represents a chimera-like state. Here the spiking rate in one of
the populations oscillates at a high amplitude, while the spiking
rate of other population has a low amplitude of oscillations.
Below we discuss such solutions in more detail. Note that
the system is bistable in the interval Jo € (—5.28,—2.41).
In this interval, the chimera-like state may coexist with a
symmetric fixed point, or with a nonsymmetric limit cycle,
or with quasiperiodic oscillations.

Further increase of the coupling strength Ji, within the
populations revokes the bistability. In Figs. 2(d) and 2(g) this
is demonstrated for the fixed value J;, = 20. The continuation
of the symmetric limit cycle solution into the region Jex < 0
shows that the system has no coexisting attractors for any
Jex < 0. Unlike in the previous case, here the symmetry
breaking appears through a period doubling bifurcation, which
occurs at Jo, = —1.46. Latter this bifurcation leads to a
chaotic regime in which high and low activities of neurons
change irregularly between the populations. The microscopic
dynamics of the system in this regime will be presented below.
The chaotic regime is replaced by a periodic solution via a limit
point cycle bifurcation at Jex = —3.25. The nonsymmetric
periodic solution that exists for Jox < —3.25 represents the
above-mentioned chimera-like state.

To better visualize the chimera-like state, in Fig. 3 we
fix Jex = —4 and show the projections of the trajectory to
the (vg,ro) and (vy,r;) plains as well as the dynamics of the
spiking rates ro(¢) and r;(¢) in different populations. We see
that the spiking rates in different populations oscillate with

considerably different amplitudes. In one of the populations
the spiking rate is close to zero (blue curve in the figure),
and its oscillations are almost unremarkable on the scale of
variation of the spiking rate of other population (red curve).

Simulation of the microscopic model

Now we consider the problem of two interacting QIF neuron
populations on the microscopic level. Numerical simulations
of the microscopic model Egs. (4) are interesting for two
reasons. First, we can verify whether the macroscopic Egs. (16)
derived in the thermodynamic limit N — oo predict well the
dynamical regimes of a finite-size network. Second, such

10 : :
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FIG. 3. Chimera-like solution of the macroscopic model (16) for
inhibitory coupling between populations at (Je, Jin) = (—4,20), and
other parameters the same as in Fig. 2. (a) Projections of the solution
to the plains (ry,v9) and (ry,v;) are presented by different colors.
(b) Dynamics of the spiking rates in different populations also shown
by different colors.
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simulations allow us to observe the behavior of individual
neurons for any particular macroscopic regime.

Direct numerical integration of Egs. (4) is problematic
because the membrane potential of the QIF neuron tends to
infinity at the moment when the neuron fires. This problem
can be avoided by the change of variables

Vix = tan(0; 1 /2) (22)

that transforms the QIF neurons into theta neurons, where 6;
is the phase of the jth neuron in the kth population. Then the
model (4) in the theta representation reads as

0k = (1 —cos8 )+ (1+cosb; )(n; + Iy). (23)

When the QIF neuron fires, its membrane potential approaches
infinity, V;; — 00, and then its value is reset to minus
infinity, V; x — —o0. In the theta representation, this process
is smooth: the phase 6, ; simply crosses the value 7.

The parameters n;, satisfying the Lorentzian distribu-
tion (13), were generated deterministically by using for-
mula n; =7+ Atan[(7/2)(2j — N — 1)/(N + 1)], where
j=1,...,N and A =1. Such a numeration of neurons
means that the isolated neurons with the index j < j. = (N +
1)/2 — (2N + 1) arctan(s)/7 are excitable and the neurons
with the index j > j. are spiking. At each step of integration
of Egs. (23), the synaptic variables (6) were estimated as
Si(t) = dN,f/N, where deS is the number of neurons in
the kth population whose phases are in the interval 6;; €
[2 arctan(Vy,),r]. Similarly, the firing rates were estimated
as ry = dN; /(Ndt), where dN/ is the number of neurons
in the kth population whose phases are in the interval 0, €
(r — 2dt,m). Such estimations are based on the assumption
that the time step dt is small, and thus the phase speed of
neurons close to the firing phase & = 7 can be approximated
as G'j,k ~~ 2. Because of the finite number of neurons, the
quantities dN; fluctuate in time and the firing rates vary
nonsmoothly. For better visualization, we smoothed these
quantities by using a moving average with a time window
of the size §t = 5 x 1072,

The three columns in Fig. 4 show the dynamics of the
microscopic model for three different dynamical regimes
defined by different choices of the coupling strengths (Jex, Jin)-
In order from left to right, they are (—4,10),(—4,20), and
(—2.5,20). These values are marked in Fig. 2(a) by crosses.
The upper (a)—(c) and bottom (d)—(f) panels in Fig. 4 show,
respectively the dynamic of the spiking rates and phases of
individual neurons in both populations.

Figures 4(a) and 4(d) correspond to the splay state.
According to the macroscopic model, this state is characterized
by stationary spiking rates, which are different in different
populations. For the given values of the parameters, the
macroscopic model predicts the values of the spiking rates ry =
0.09 and r; = 0.98. In panel (a) they are shown by horizontal
lines. The spiking rates obtained from the microscopic model
fluctuate around these predicted values. The fluctuations occur
due to the finite size of the network. In the population with a
small spiking rate, almost all neurons are quenched, while in
the population with a larger spiking rate almost all neurons
spike; however, their spikes are incoherent, and they do not
produce any macroscopic oscillations. Note that for the given
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value 77 = 0, one half of the isolated (Jox = Ji, = 0) neurons
in each population are spiking and the other half are excitable.

The chimera-like state reproduced by the microscopic
model is shown in panels Figs. 4(b) and 4(e). The values
of the parameters are the same as in Fig. 3, where this
state is demonstrated via the macroscopic model. Comparing
Figs. 3(b) and 4(b), we see that the dynamics of the spiking
rates derived from the microscopic and macroscopic models
are in good agreement. In the chimera-like state, the majority
of neurons in one of the populations are quenched and their
spiking rate is close to zero, while in another population the
majority of neurons spike synchronously and produce large
amplitude oscillations of the spiking rate.

Finally, in Figs. 4(c) and 4(f) we demonstrate the solutions
of microscopic equations for a chaotic chimera-like state.
Here synchronous spiking erratically jumps from one to
another population. For the given values of the parameters,
the macroscopic model exhibits similar behavior (not shown).

B. Excitatory coupling

We turn now to the situation when couplings within and
between the populations are both excitatory, Ji, > 0 and Jox >
0. In this case the bifurcation scenarios are less diverse than for
the inhibitory coupling considered above. Now the qualitative
change of solutions is mainly defined by only two bifurcations,
namely, the Neimark-Sacker and branch point of cycles (BPC)
bifurcations.

In Fig. 5(a) we present the bifurcation diagram of the
macroscopic model (16) in the region of parameters (Jex, Jin)
relevant to the excitatory coupling between populations. Here
as well as in Fig. 2 the white area corresponds to monos-
table symmetric states, and the colored region represents
nonsymmetric attractors. At the border of the colored region
(red curve) the system undergoes BPC bifurcation. At this
bifurcation the symmetric limit cycle looses stability, and
there appears a symmetrical pair of stable nonsymmetric limit
cycles. The two green curves in the colored region indicate
Neimark-Sacker bifurcation.

In Figs. 5(b) and 5(c), we fix Ji, =20 and continue
the solutions of Egs. (16) into the region Jex > 0. Unlike
Figs. 2(b)-2(g), here we plot not only the local maxima ry'**
and r{"™™ of the spiking rates of different populations, but also
the values r; and ry, respectively, at the moments when the
neighbor population has reached its local maximum. This rep-
resentation allows us to distinguish antiphase periodic oscilla-
tions ro(t) = ri(t + T /2), where T is the period of the limit cy-
cle. Such oscillations are common for the excitatory coupling.
For fixed Ji, = 20, the antiphase periodic oscillations take
place in the region 0 < Jex < 4.5. In the region 4.5 < J <
8.3, between two Neimark-Sacker bifurcations, the system
exhibits complex dynamics, including high-periodic cycles,
quasiperiodicity, and chaos. Then for 8.3 < Ji < 11.9, the
chimera-like state appears. This state is destroyed via a branch
point of cycles bifurcation at Jox = 11.9, and for Jo > 11.9
the symmetric limit cycle oscillations are established.

The microscopic dynamics of the system for the periodic
chimera-like state at (Jex,Jin) = (10,20) [in Fig. 5(a) these
values are marked by a cross] is demonstrated in Fig. 6. In
Fig. 6(a) the projections of the microscopic dynamics to the
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FIG. 4. Modeling of two inhibitory coupled populations of QIF neurons, according to the microscopic Egs. (23). The number of neurons
in each population is N = 1000. (a)—(c) Dynamics of spiking rates of different populations shown by different colors. (d)—(f) Microscopic
dynamics of the phases of neurons in both populations. Three columns of the figure correspond to three different sets of the coupling strengths
(Jexs Jin): (—4,10) [(a) and (d)], (—4,20) [(b) and (f)], and (—2.5,20) [(c) and (f)]. Other parameters are the same as in Fig. 2. Two horizontal

lines in (a) show the solution of the macroscopic model (16).

plains (rg,vg) and (r1,v;) are compared with the corresponding
projections obtained from the macroscopic model. Again, we
see that the macroscopic model predicts well the dynamics
of the finite-size network. Figures 6(b) and 6(c) show the
time dependence of the spiking rates and phases of neurons,
respectively, for both populations. Comparing Figs. 6(c) and
4(e), we reveal that the microscopic dynamics of the systemin a
chimera-like state are different for the inhibitory and excitatory
coupling between populations. For the inhibitory coupling,
almost all neurons in one population spike in synchrony, and in
another population the majority of neurons are quenched. For
the excitatory coupling, in both populations almost all neurons
spike, but in one population, they spike synchronously and
in another asynchronously. These two different microscopic
dynamics lead to the similar macroscopic result: for one pop-
ulation, the spiking rate exhibits large amplitude oscillations,
while for another population it is close to zero.

V. MEAN FIELD COUPLING

In this section, we additionally consider another type of
coupling between the populations. As well as above, we
assume that the interaction within the populations is defined
by the synaptic current (3); however, the coupling between the
populations is provided by the mean field of the membrane
potential. Experimentally, such a situation can be imagined
as a control problem. Assume we have two noninteracting
populations of neurons and can separately measure their mean
membrane potentials. Then we stimulate the first population
by a signal proportional to the mean field measured from
the second population and vice versa. In that case the total
current 7, that defines all interactions between and within the
populations in Eq. (4) takes the form

Zi = JinSk Vin + Jexvi—i, (24)

where

N
1
= — Vi 25
e Ngz,k (25)

is the mean membrane potential of the kth population. The
macroscopic dynamics of this system are again described by
Eqgs. (16), but the total current is now defined by Eq. (24).

An example of chimera-like state obtained with an in-
hibitory mean field coupling between the populations is
demonstrated in Fig. 7. In numerical simulations of the
microscopic model, the mean membrane potential (25) was
estimated by ignoring the contribution from neurons with
extremely large values of membrane potential, when V;; >
200. This allowed us to avoid the divergence of the sum
(25) due to the finite-size effect. The dynamics of the system
presented in Figs. 7(b)-7(c) is similar to that shown in
Figs. 4(b)—4(e), which has been obtained with the inhibitory
synaptic coupling.

VI. DISCUSSION

In this paper, we analyzed the dynamics of a neural network
consisting of two identical populations of quadratic integrate-
and-fire neurons. Both populations are heterogeneous; they
include inherently spiking and excitable neurons. The main
part of the paper is devoted to the synaptic coupling within
and between the populations. The coupling is global and takes
into account the finite width of synaptic pulses. We assumed
that the interactions within the populations are excitatory
and considered two cases, with the inhibitory and excitatory
coupling between the populations.

Using a recently developed reduction technique [28] based
on the Lorentzian ansatz, we derived a macroscopic model
that describes the neuron spiking rates and mean membrane
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FIG. 5. (a) Two-parameter (Je,J;y) bifurcation diagram of the
macroscopic model (16) for excitatory coupling between populations
at fixed parameters 7 =0, Vi, = 50, and A = 1. The white and
colored areas correspond, respectively, to the monostable symmetric
states and the nonsymmetric attractors. Continuous curves, marked
by acronyms, represent bifurcations: NS: Neimark-Sacker (green)
and BPC: branch point of cycles (red). (b) and (c) One-parameter
bifurcation diagrams constructed as a continuation of the solutions of
Egs. (16) via a gradual increase of the parameter Jox from O to 14 at
fixed J;, = 20. Blue and red points in (b) show, respectively the local
maxima of ry denoted as ry™ and corresponding values of r; when
these maxima are attained. In (c) the red color corresponds to r{™*,
while the blue color defines r.

potentials in different populations. The model is defined by
only four ordinary differential equations, which are exact in the
limit of the infinite-size network. Such a simplification allowed
us to perform a thorough bifurcation analysis of the system. In
the parameter plane defined by the coupling strengths within
and between the populations, we identified the areas where
the symmetric solutions (with the identical dynamics in both
populations) lose their stability and nonsymmetrical solutions
are established. Our analysis showed that the competition of
neural interactions within and between the populations may
lead to a rich variety of nonsymmetric patterns, including
a splay state, antiphase periodic oscillations, chimera-like
states, and chaotic oscillations as well as bistabilities between
various states. The most interesting nonsymmetric pattern is
the chimera-like state. Here the neurons in one population
behave synchronously and produce high amplitude oscillations
of the spiking rate, while the neurons in another population
are quenched or desynchronized and their spiking rate is close
to zero. The chimera-like state exists for both the inhibitory
and excitatory synaptic coupling between the populations.

PHYSICAL REVIEW E 96, 042212 (2017)

FIG. 6. Chimera-like state for excitatory coupling between pop-
ulations. The microscopic Eqs. (23) were solved at (Jex,Jin) =
(10,20), N = 1000, and other parameters are the same as in Fig. 5.
(a) Projections of the solution to the plains (rg,vo) and (r;,v;). The
smooth green and yellow closed curves show the solutions of the
macroscopic model (16). (b) Dynamics of spiking rates in different
populations. (c) Microscopic dynamics of the phases of neurons in
both populations.

In addition, we showed that the chimera-like state may
appear when the synaptic coupling between the populations
is replaced with a mean field coupling.

To verify the validity of the macroscopic model we
performed numerical simulations of the microscopic model
equations for a finite-size network. As a result, we were
convinced that the macroscopic model predicts well the

Vo, U1

S 5 J
=
oL |
C
. 500/
<o e—— e —
E1000
500 - - J~J-
1000 =
0 10 20

FIG. 7. The same as in Fig. 6, but the coupling between
populations is provided by a mean field, according to Eqgs. (24) and
(25). The values of the parameters are Jox = —2, Ji, = 23, 7 = =7,
Vin = 50, and A = 1. Dynamics of the spiking rates are smoothed by
moving average method with a time window of the size 8 = 1072.
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behavior of a finite-size network consisting of only thousand
neurons in each population. Thus the macroscopic models of
the type considered here are natural candidates for use in future
large-scale brain simulations. Such models can be considered
as an alternative to neural mass models [33], which are
especially useful for understanding brain rhythms. The neural
mass models also employ only several differential equations
to describe the coarse-grained activity of large-scale neural
networks; however, they are phenomenological in nature. In

PHYSICAL REVIEW E 96, 042212 (2017)

contrast, the approach discussed in this paper provides an exact
macroscopic description of an underlying microscopic spiking
neurodynamics.
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