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Abstract We consider the FitzHugh—Nagumo model
axon under action of a homogeneous high-frequency
stimulation (HFS) current. Using a multiple scale
method and a geometrical singular perturbation the-
ory, we derive analytically the main characteristics of
the traveling pulse. We show that the effect of HFS
on the axon is determined by a parameter proportional
to the ratio of the amplitude to the frequency of the
stimulation current. When this parameter is increased,
the pulse slows down and shrinks. At some threshold
value, the pulse stops and its width becomes zero. The
HEFES prevents the pulse propagation when the parame-
ter exceeds the threshold value. The analytical results
are confirmed by numerical experiments performed
with the original system of partial differential equa-
tions.

Keywords High-frequency stimulation -
FitzHugh—Nagumo model - Traveling pulse - Multiple
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1 Introduction

Although applied electrical stimulation was used to
characterize neural activity for over 200 years, only
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in recent decades it has been moved beyond the
realm of inquisitive exploration into clinical applica-
tion. Undesirable hyper-activity of neurons character-
izes many diseases and may cause pathological mo-
tor or sensory effects. Blocking these action poten-
tials could help alleviate pain or stop muscle spasms
[1, 2]. High-frequency alternating currents (HFAC)
applied directly to the nerve, has been experimentally
shown to produce a reversible conduction block [3-8].
Some theoretical understanding of this phenomenon
has been achieved by numerical simulations of the
Hodgkin—Huxley type axon models with a locally ap-
plied HFAC [7-10].

High-frequency electrical stimulation has been also
applied clinically via deep brain stimulation (DBS)
electrodes implanted in specific brain regions to treat
movement disorders such as Parkinson’s disease and
dystonia [11-14]. In addition, DBS therapies have
been explored for other neurological disorders includ-
ing depression and epilepsy [15, 16]. Despite a long
and successful history of using DBS therapy, its mech-
anism of action is still unclear [17, 18]. Some exper-
iments in animals show that high-frequency DBS can
block axonal conduction [19, 20] and this might ex-
plain the mechanism of its therapeutic action. The size
of electrodes used clinically for DBS are large macro-
electrodes, several orders of magnitude larger than sin-
gle neuron cells [21]. Therefore, the models of locally
applied HFAC [7-10] are not appropriate for this situ-
ation. More suitable description of action of DBS elec-
trode may be based on a hypothesis that the DBS elec-
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trode provides a homogeneous high-frequency stim-
ulation along the whole axon. Investigation of such
models is essential for better understanding the abil-
ity of axons to propagate pulses under action of DBS.

In this paper, we analyze the effect of a homoge-
neous HFS on pulse propagation in a single axon. We
consider an axon model described by the FitzHugh—
Nagumo (FN) equations [22, 23] and show that for
sufficiently large amplitudes of HFS the pulses can-
not propagate in the axon. Seeking analytical results
we first apply a multiple-scale method [24] and sep-
arate the neuron dynamics into slow and fast com-
ponents. As a result, we derive averaged equations
for the slow component that do not contain a high-
frequency term. Then we analyze the traveling waves
in the averaged system via a singular perturbation the-
ory [25, 26]. Such an approach allows us to obtain the
dependence of the parameters of the traveling pulse on
the amplitude of HFS current in an analytical form and
derive an analytical formula for the threshold of con-
duction block.

The rest of the paper is organized as follows. In
Sect. 2, we formulate the problem and reduce the FN
model under HFS to averaged equations. Section 3 is
devoted to analytical and numerical analysis of travel-
ing pulse solutions of the averaged system. In Sect. 4,
we justify the results of traveling pulse solutions by
numerical experiments performed with the original FN
model and averaged equations. The paper is finished
with the conclusions presented in Sect. 5.

2 Model equations and averaged system
Let us consider the FitzHugh—Nagumo model neu-

ron [22, 23] in the presence of homogeneously applied
HEFS current:

9 3 92
alt)zv_%_w-pDé + acos(wt), (1a)
ow

E:s(v—i—ﬁ—yw)- (1b)

Here, (1a) describes the dynamics of the membrane
potential v, where D is the diffusion coefficient and
parameters a and o define respectively the ampli-
tude and frequency of HFS induced by DBS electrode.
Equation (1b) defines the dynamics of the slow recov-
ery variable w with a positive rate parameter ¢ < 1.
The parameters § and y are chosen such that without
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of HFS (a = 0) the neuron is in an excitable regime. In
numerical simulations presented below, we fix 8 = 0.7
and y = 0.8. The diffusion coefficient D can be elimi-
nated by rescaling the space variable x, and thus in the
following we take D = 1 without loss of generality.
If the period T = 27 /w of HFS is much less than
all characteristic times of the FN neuron, then the sys-
tem (1) can be solved by a multiple-scale method [24],
or more precisely, by a two-scale expansion. Accord-
ing to this method, an approximate solution of the sys-
tem (1) can be represented as a sum of slow and fast
components (see the Appendix for details):

v(t) ~ () + Asin(wt), (2a)
w(t) ~w(t), (2b)

where the slow variables are marked by bars and

A=—. 3
1)

is the main parameter defining an action of the HFS. In
the following, we refer to this parameter as the stimu-
lation parameter. This parameter is proportional to the
ratio of the amplitude a to the frequency w of HFS.
From (2), we see that the fast high-frequency compo-
nent A sin(wt) is added only to the membrane poten-
tial and the recovery variable contains only the slow
component. The slow variables v(¢) and w(z) describe
the dynamics of the system averaged over the period
of stimulation and satisfy the equations:

v _ | A2 T N 929 4a)
—=v|l-—)--w+—,

ot 2 3 9x2

aw . _

E:s(v+ﬁ—yw). (4b)

Formally, these equations are similar to the original
system (1) (for a = O they are identical), but the HFS
term a cos(wt) is eliminated in (4). The dependence of
the averaged system (4) on the HFS appears through
the modification of the coefficient at the variable v
in the r.h.s. of (4a). As a result, the nullcline of this
equation becomes dependent on the stimulation pa-
rameter A. The nullclines for different values of A are
shown in Fig. 1, while the inset of this figure shows
the dependence of the excitability parameter A on A.
The definition of the excitability parameter A is evi-
dent from Fig. 1. We see that the increase of the stimu-
lation parameter A reduces the excitability of the neu-
ron, since for sufficiently large A the parameter A in-
creases drastically with the increase of A. Thus, we
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Fig. 1 The nulclines [w = 0: @ = (i + B)/y and v = O:
w=uv(l — A2/2) - '3/3] of the averaged system (4) for dif-
ferent values of the stimulation parameter A. The inset shows
the dependence of the excitability parameter A on A

can expect the large stimulation intensities to block
the propagation of pulses. In the next section, we de-
rive the precise criterion for such a conduction block
phenomenon.

3 Traveling pulse solutions of the averaged system

To study traveling waves, we first place the system
of equations (4) in a traveling coordinate frame of
reference. We define the traveling wave coordinate
& = x — ct, where ¢ > 0 is the wave speed, yet to be
determined. Then the partial differential equations (4)
for the stationary traveling waves become the ordinary
differential equations:

5 = &, (52)
A? 3

ﬁg:—ﬁ<1—7>+?+u')—cﬁ, (5b)

_ & _ _

wgz—;(v—i—ﬂ—yw). (5¢)

Here, the subscript £ denotes the derivative with re-
spect to the traveling wave coordinate £ and an auxil-
iary variable u = v is introduced to write the system
as first order differential equations. This system has
the only fixed point (v, ig, wo) with the coordinates
o =0, wo = (vo + B)/y and vy being the resting po-
tential of the neuron that satisfies the real value solu-

tion of the cubic equation

=3 2

v 1 A
i—%@————)+é=o (6)

The traveling pulse solutions are defined by homo-
clinic orbits of system (5). Such orbits begin and end
at the fixed point of the system. For further analy-
sis, it is convenient to shift the origin of the coordi-
nate system of equations (5) to the fixed point. Then
the equations for the deviations from the fixed point
(6v, du, dw) = (v — vo, U — ug, W — wy) read:

Sve = bu, (7a)
Sug = (A%/2 — 1 + 0})8v + vodv?

+8v3 /3 + dw — cdu, (7b)
dwg = —(8v — ydw)e/c. (7¢)

3.1 Traveling pulses in a singular limit ¢ — 0

To find approximate analytical expressions for the
traveling pulse, one can use perturbation methods ex-
ploiting the different time scales of the system. In the
limit of small parameter ¢ — 0, the traveling pulse
can be constructed with the help of the geometrical
singular perturbation theory [25, 26]. The phase space
sketch of homoclinic orbits for system (7) in the singu-
lar limit ¢ = 0O is presented in Fig. 2(a). There are two
homoclinic orbits marked by letters U and S. The first
orbit lies completely in the plane §w = 0 and describes
a pulse with the zero velocity, which is unstable [27],
and hence is not interesting from a physical point of
view. The second orbit marked by letter S represents a
traveling pulse, which is of interest for further analy-
sis, since it is stable [28]. In Fig. 2(b), a voltage pulse
sketch of this orbit is shown in the traveling coordi-
nate frame for small ¢ > 0. Going backward in & or
forward in time this pulse consists of four segments
[25, 26]: (i) The leading edge that corresponds to a fast
dynamics in the plane §w = 0 of the phase space of
system (7) [cf. Fig. 2(a)]; (ii) A slow relaxation from
dw = 0 to a new value Sw = §w = const. at the con-
ditions 6u = 0 and dug = O; (iii) The trailing edge that
corresponds to a fast dynamics in the plane w = §w;
(iv) The slow relaxation from w = W back to zero
at the conditions du = 0 and dug = 0. Below we de-
scribe the governing equations for each segment of the
homoclinic trajectory in more details, and derive the
main parameters of the traveling pulse.
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Fig. 2 (a) Phase space sketch of stable (S) and unstable (U)
homoclinic trajectories of system (7) in a singular perturbation
limit ¢ = 0. (b) Voltage pulse of the stable (S) homoclinic orbit
vs. traveling wave coordinate £ for small ¢ > 0. Av; and Av;
denote the heights of the leading and trailing edges while Lo
and Ly mark respectively the lengths of pulse segments corre-
sponding to the overshoot and undershoot

(1) The leading edge. This segment of the homoclinic
trajectory lies in the plane §w = 0 and the dynamics of
fast variables §v and du is governed by (7a) and (7b)
that can be presented in the form

dvg = du, (8a)
dug = 8v(dv — dv1)(8v — 6vp)/3 — cdu (8b)
with

S = [-310 + (12— 642 - 353)/*] /2. )

The leading edge is defined by heteroclinic trajectory
of the system (8), which connects its fix points (0, 0)
and (8v1, 0) in the phase plane (§v, du). Such a trajec-
tory exists when the speed c satisfies (cf., for example,
Ref. [29], p. 273):

¢ =/1/6(8v; — 28v»). (10)

Although here we have determined the speed of the
leading edge, (10) defines the speed of the whole
pulse, since the speed of all segments of the travel-
ing pulse must be the same. The dependence of the
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Fig. 3 Pulse speed ¢ and heights of leading Av; and trailing
Av; edges (Av; = Av,) as functions of the stimulation parame-
ter A

speed ¢ on the stimulation parameter A can be defined
analytically in a parametric form. For this purpose, we
choose the resting potential vy as an independent, vari-
able parameter. Then the dependence of A on vy can
be obtained from (6)

A@o) = [2(1 = 1/y — 53/3 = B/y10)]

The speed ¢ in (10) is expressed through variables
évy and dv, whose dependence on the parameter vy
is determined by (9). Thus, the parametric dependence
of the speed on the stimulation parameter [c¢ = c(v),
A = A(vg)] is defined by (9)—(11). This dependence is
depicted in Fig. 3. We see that the speed of traveling
pulse decreases with the increase of stimulation inten-
sity and turns to zero at a critical value A = A* defined
by

A* =,/2(1 — B2/3). (12)

The zero speed is attained at the resting potential
vo = —f. Equation (12) defines a threshold stimu-
lation intensity for existence of traveling pulse. For
A > A*, the traveling pulse solution does not exist,
and thus the pulses cannot propagate in the axon if
the amplitude a of HFS exceeds the critical value
a* = wA*, which is proportional to the frequency of
HFS.

The hight Av; of the leading edge [cf. Fig. 2(b)]
is defined as Av; = §vy. Its parametrical dependence
on the stimulation parameter A is determined by equa-
tions (9) and (11) and is shown in Fig. 3. The hight Av;
decreases with the increase of the stimulation param-
eter A, however, unlike the velocity it does not van-
ish when the stimulation parameter reaches the critical
value A*.

1/2

an
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(ii) Slow relaxation from Sw = 0 to Sw = dw. Here,
one can neglect the variation of the fast variables in
system (7), taking dve = 0 and dug = 0. It follows that
du =0 and Sw is related with 6v by

dw = F(6v) = —dv(dv — dv1)(dv — dvp)/3. (13)

The dynamics of the slow variable §w is determined
by (7c) with the initial condition §w = 0 and relation-
ship between the variables §w and §v defined by (13).
We are interesting in the length Lo of this segment
(pulse overshoot) [cf. Fig. 2(b)], which can be defined
as

0

dé

Lozf/ _qow (14)
& Jsp yow — Sv

Note that the value dw is jet unknown; it will be de-
termined in the next segment of the homoclinic trajec-
tory.

(iii) The trailing edge. This segment of trajectory lies
in the plane §w = §w. Here, the dynamics of fast vari-
ables 6v and §u is governed by (7a) and (7b) that can
be presented in the form

dvg = du, (15a)
Sug = P (Sv, Sw) — cdu, (15b)
where

@ (8v, dw) =dv(sv — dv1)(Bv — Sv2)/3+ 6w (16)

is a third order polynomial with respect to the variable
8v. Denote the roots of this polynomial as §v; < §v <
803 and rewrite (16) in the form:

@ (v, 8w) = (v —801)(8v — 8v2)(8v — 6v3) /3. (17)

The trailing edge is defined by heteroclinic trajec-
tory of the system (15), which connects its fix points
(6v3,0) and (8v1, 0) in the phase plane (v, du). Such
a trajectory exists when the speed ¢ [which must co-
incide with the speed of the leading edge defined
by (10)] satisfies

c=+/1/6(26v3 — §v3 — 801). (18)

Comparing (17) with (16) and (18) with (10), we ob-
tain the relationship between the coordinates of fixed
points of systems (15) and (8)

891 = (28v2 — 8v1)/3, (19a)
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Fig. 4 The lengths of pulse overshoot (L) and undershoot
(Ly) multiplied by parameter ¢ vs. the stimulation parameter A

8t = (2801 — 8v2)/3, (19b)
813 = 2(8v1 + 8v2)/3 (19¢)

and define the value of unknown parameter 5w intro-
duced previously:

dw = —46v1802603/3. (20)

The hight Av; of the trailing edge [cf. Fig. 2(b)] is
defined as Av; = §v3 — 8v;. From (19a) and (19c¢), it
is easy to see that it coincides with the hight of the
leading edge, Av, = dv; = Av.

Taking into account the above results, (14) defining
the length of the pulse overshoot can be rewritten in a
form convenient for numerical estimation,

c/5U1 F'(8v)dsv
Lo=-

= O @1
¢ Jssy yF(@v)—dv

where F’(8v) is the derivative of function F(8v).
Here, we have replaced the integration variable w by
dv taking into account the relationship (13).

(iv) Slow relaxation from w = dw back to sw = 0.
Here as well as in the segment (ii), the variation of fast
variables is neglected and dynamics of the slow vari-
able Sw is determined by (7c) with the initial condition
dw = §w. Taking into account the relationship (13) be-
tween the variables Sw and év the length Ly of this
segment (pulse undershoot) [cf. Fig. 2(b)] is defined
by integral:
c [ F'(Sv)dsv
Ly=Sf  Lovdoy (22)
o VF(v)—dv

The lengths Lo and Ly are shown in Fig. 4 as
functions of the stimulation parameter A. Both lengths
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Fig. 5 (a) The speed ¢ of traveling pulses as a function of
the stimulation parameter A for different values of €. The bold
curves show the speed dependence analytically determined in
the singular perturbation limit ¢ = 0. (b) The threshold A* of
the stimulation parameter vs. &

decrease with the increase of A and vanish when the
stimulation parameter reaches the threshold value A*.
Thus, the mechanism of HFS responsible for the sup-
pression of pulse propagation consists in pulse nar-
rowing. With the increase of HFS intensity, the pulse
shrinks and its width becomes zero when A = A*.

3.2 Traveling pulses for finite ¢ > 0

The singular perturbation theory has allowed us to de-
termine analytically many important characteristics of
the traveling pulse, including the threshold value A*
of the stimulation parameter for the existence of trav-
eling pulse solution. In fact, the threshold A* depends
on the parameter ¢. For finite ¢ > 0, the analytical
approach fails and the homoclinic trajectories of sys-
tem (7) can be determined only numerically. In Fig. 5,
we show the results of such an analysis. The depen-
dence of the pulse speed on the stimulation parameter
A for different values of ¢ is presented in Fig. 5(a). For
& > 0.008, these curves have been constructed with
the help of the MatCont package [30] and for smaller
& < 0.0008, the shooting method [31] has been used.
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Each curve consists of two branches. The upper branch
represents the speed of the stable pulse [27], while the
lower branch corresponds to the unstable pulse [28].
The point where the two branches coincide defines the
threshold parameter A*. At this point, the homoclinic
trajectories corresponding to the fast (stable) and slow
(unstable) pulses collide and disappear, such that for
A > A* the traveling pulse solutions do not exist. Note
that the curves in Fig. 5(a) approach asymptotically
the singular perturbation solution (bold curve) when
& — 0. This justifies the analytical results obtained in
the previous section.

The dependence of the threshold A* of the stim-
ulation parameter on ¢ is shown in Fig. 5(b). Larger
values of the parameter ¢ require less stimulation in-
tensity A* to suppress the pulse. This is because the
pulse length of the free (A = 0) system depends on the
parameter €. The increase of the parameter ¢ has the
same effect as the increase of the stimulation inten-
sity A; they both narrow the pulse [cf. (21) and (22)].
Therefore, for larger ¢, less HFS intensity is needed to
zero the pulse length and suppress its propagation.

4 Numerical experiments

To justify the results of stationary traveling pulse solu-
tions obtained in the previous section, here we perform
numerical experiments with the original system (1) of
partial differential equations (PDE) as well as with the
averaged PDEs (4). First, we verify the validity of the
averaged equations. In Fig. 6, we show the dynamics
of the neuron potential in the middle of the sample at
different values of the stimulation parameter A. The
thin (blue) curves represent the solutions of the orig-
inal system (1) while the bold (red) curves show the
solutions of the averaged equations (4). We see that
these solutions are in good agreement. The PDEs have
been solved with the periodic boundary conditions tak-
ing the length of the sample equal to L = 400. The
initial conditions are chosen in such a way, that for a
given stimulation intensity A, they coincide with the
stable pulse profile. As predicted by singular perturba-
tion theory and numerical analysis of stationary pulses
for finite ¢, the increase of the stimulation intensity
leads to the decrease of both the pulse velocity and the
pulse length [cf. Figs. 6(a)—(c)]. The propagating pulse
disappears for A > A* ~ 1.13 and only small ampli-
tude subthreshold high-frequency oscillations remain
[cf. Fig. 6(d)].
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Fig. 6 The dynamics of the neuron potential at the middle of
the sample for fixed ¢ = 0.008 and @ = 50, and different values
of the HFS amplitudes: (a) a =0 (A = 0); (b) a =30 (A = 0.6);
(¢) a=50 (A =1); (d) a=56.5 (A =1.13). The thin (blue)
curves show the solutions of the original system (1) and the bold
(red) curves represent the solutions of the averaged system (4)
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In Fig. 7, we demonstrate the space-time evolution
of the averaged system (4) under initial excitation of
the middle of the neuron. The excitation is performed
with a DC current I = 2 applied to the small space in-
terval Ax = 4 in the center of the sample for the initial
time interval At = 1; then the DC current is off. In the
absence of HFS, the DC stimulus initiates two pulses
traveling in opposite directions [cf. Fig. 7(a)]. An in-
fluence of HFS to the pulse propagation is demon-
strated in Figs. 7(b)—(d). When the HFS intensity is in-
creased, the propagating pulses shrink and slow down.
The pulses die out when the stimulation parameter ex-
ceeds the threshold value A* ~ 1.13 [cf. Fig. 7(d)].
Again, this confirms the main conclusions of the pre-
vious section.

5 Conclusions

We have analyzed the effect of a homogeneous high-
frequency stimulation on a nerve pulse propagation in
the framework of a simple FitzZHugh—Nagumo model
axon. Exploiting the multiple-scale method and geo-
metrical singular perturbation theory, we managed to
derive the main characteristics of the traveling pulse

Y
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Fig. 7 Space-time evolution of the averaged system (4) under initial excitation of the center of the neuron with the DC current / =2
applied for a short time interval At = 1. The parameter ¢ is the same as in Fig. 6 and the HFS amplitudes are: (a) A =0; (b) A =0.6;

©A=10;d)A=1.13
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under action of high-frequency stimulation in an an-
alytical form. We have shown that the axon dynamics
can be presented as a sum of slow and fast components
and for the slow component derived a system of av-
eraged equations. In this approximation, the effect of
high-frequency stimulation on the axon is determined
by the parameter equal to the ratio of the amplitude to
the frequency of the stimulation current.

A homogeneous high-frequency stimulation is an
efficient tool to control the width and velocity of the
traveling pulse. With the increase of the stimulation
amplitude, the pulse shrinks and slows down. Our an-
alytical approach has allowed us to understand the
mechanism of conduction block. When the stimula-
tion amplitude riches the threshold value, the pulse
stops and disappears through a zero width. The fur-
ther increase of the stimulation amplitude prevents
the pulse to propagate through the axon. An obtained
analytical expression for the threshold of conduction
bock shows that the threshold amplitude preventing
the pulse propagation increases linearly with the fre-
quency of stimulation current. This is in agreement
with numerical simulations of conduction block ef-
fects in more complex and more realistic axon mod-
els considered in [8, 10]. Our analytical results are
also confirmed by numerical experiments performed
with the original system of partial differential equa-
tions describing the FitzHugh—-Nagumo axon un-
der HFS.

The obtained results are relevant to the DBS re-
search, since they demonstrate an influence of a homo-
geneous HFS on nerve pulse propagation in an axon.
Our analysis suggests that axons located in the vicin-
ity of DBS electrode experience drastic changes; the
pulses propagating through these axons may be nar-
rowed and their speed may be reduced. For sufficiently
large stimulation intensity, the axons can be blocked.
These changes in axonal conductivity may be re-
sponsible for the therapeutic effect of high-frequency
DBS.

Acknowledgements  This work was supported by the Global
grant No. VP1-3.1-SMM-07-K-01-025.

Appendix: Derivation of averaged equations for
HF stimulated FitzHugh—Nagumo model

In the presence of HFS, (1) can be solved approxi-
mately by a multiple-scale method [24], or more pre-
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cisely, by a two-scale expansion. We assume the fre-
quency w of the HFS to be a large parameter. In other
words, the time w~! is much less than all character-
istic time-scales of the system. Since the HFS is non-
resonant, it provides an appreciable effect on the sys-
tem dynamics only for sufficiently large amplitude a.
In the following, we suppose that a is proportional to
the frequency w, a = Aw, where the parameter A is in-
dependent of w. We introduce a fast time 7 = wt (the
time ¢ is respectively called a slow time) and expand
the solution of the system (1) in powers of small pa-

rameter w_l :

v(t) =vot, T) + o ot T) -, (23a)
w(t) =wo(t,7) + 0 'wi(t,T) +--- . (23b)

We suppose that the functions wvo(t, 1), vi(t, 7),
wo(t, ) and wy (¢, T) are 2 periodic in . This means
that the solution is periodic on the fast time scale with
the period equal to the period of HFS. We treat # and
7 as if they where independent variables and obtain

ov dvg dvg  Jvq

2 )20 2P 24
o Yo T T T (242)
ow _ dwy Odwgy OJwj

oW _ LA 24b
or %% Tar Tac T (24b)

Substituting (23) and (24) into (1) and equating
terms proportional to ', we obtain

9

%0 _ Asin(r), (252)
T

dwo _ (25b)
0T

Similarly, for terms proportional to °, we get

dvg ~ dvg US 3%vo

— t— =y = — —_—, 26
or T ST 3 Tt g (262)
811)() 3w1

— 4+ —=¢(wp+ B — ywp). (26b)
at ot

As pointed out in Sect. 2, we assume D = 1 without
loss of generality. The solution of (25) is

vo(t, 7) =v(t) + Acos(t), (27a)
wo(t, T) = w(t), (27b)

where v(¢) and w(t) are jet unknown functions of the
slow time ¢. The equations for these functions are ob-
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tained by substituting (27) into (26)

v 9 D+ A 3
8—1: + —;Tl =v+ Acos(t) — —(U + ;OS(T))
_ %
—w+ 352 (28a)
ow  dw _ -
—+ —=¢(w+Acos(t)+ 8 —yw). (28b)
at at

and averaging these equations over the period 2w of
the fast time t:

20w _(, A%\ PP N 820 29)
— =0 _— ) - — —, a
ot 2 3 9x2

ow _ -

E:a(v%—ﬂ—yw). (29b)
Finally, an approximate solution of (1) is

v(t) ~ v(t) + Asin(wt), (30a)
w(®) ~w(), (30b)

where A = a/w and the functions v(¢) and w(z) sat-
isfy the averaged equations (29). Note that the effect of
HFES on the averaged neuron dynamics is completely
determined by the parameter A, which is proportional
to the ratio of the amplitude a to the frequency w of
stimulation current.
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