Application of next-generation reservoir computing for

predicting chaotic systems from partial observations
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II]_t I'OduCt i():[]_ The feature vector O; = O(xz;,...) is composed of biased, linear and nonlin-

ear terms:

e Next-generation reservoir computing (NG-RC) is a machine learning ap- Nonlinear terms
proach recently proposed as an effective method for predicting the dynamics of R Tinear term 0 o
chaotic systems [1]. It uses a nonlinear vector autoregression (NVAR) algorithm oW o 2 10 . :
with a feature vector consisting of several time-delayed input signals and their (2) T T T p. TiTien. Tiom.
nonlinear functions usually represented in monomial form. 0;,=| O Li—n Hitimans BT,

e Here we study the effectiveness of the NG-RC method when only a scalar . e . e
time series is available for observation. We found that the prediction is only Ogm) ot x_”
effective if the feature vector of the NVAR algorithm contains monomials of ) ) _ o | 37?_(;_1)”7 |
sufficiently high degree. To improve the prediction, we propose a modified
algorithm, called NG-RC-Ch, in which monomials are replaced by Chebyshev The linear term includes k points from the past signal. For NG-RC case the
polynomials of the first kind |2]. nonlinear term O is a set of all unique monomials of degree ! composed of all

components of the linear term O(). Nonlinear terms for the NG-RC-Ch case
are obtained similarly, by replacing the monomials with Chebyshev polynomials
of the corresponding degree, for example, 7' y/2 — T ()71}, (y).

Suppose we have a discrete time series of data {1, x2, ...} sampled at regular Row vector W, of output weights is determined in the training phase
time steps from a scalar observable x(t) of a chaotic system, x; = x(tAt): according to the requirement that the map provides the best approximation of
the time series. By introducing the notations:
L A ........ ] | 1
T, ®...e ‘ ““““ of .. Y — [an T wn—ly Ln—-1 — an—Q, *t ] /At and O — Oﬂ_l’ On_27
e L | :
ti—on,  ti—n, t; i+l

o . . , , W .t 1s obtained by the least-squares method with Tikhonov regularization:
The multidimensional state space is reconstructed by using the time delay out Y q S

coordinates. The embedding dimension k is estimated using the false nearest Wou = YOT (007 + 51)—1

neighbors algorithm, and the delay time 7 = n,At — by the first minimum of

the average mutual information. The dynamics of the system is approximated Here 3 is the regularization parameter, also known as ridge parameter, and I is
using a map: the identity matrix.

Tit1l = T T AtWoutO(%', Li—m, g - ,xi—(k—l)nT)

Results
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(c) (c) Return map of the actual and predicted variable z of the Lorenz system. The blue dots refer to the actual Lorenz system and the red
30'4 | Mw | = M Cho | dots overlaying the blue dots refer to the prediction. The degree of nonlinearity of NG-RC-Ch algorithm is m = 9.
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Examples of short-term prediction of the dynamics of Rossler and Lorenz systems by the 2 \N\M\/V\/\/\N\/WW\ 7 gk, Rossler-like oscillator. In real experiments
NG-RC-Ch and NG-RC algorithms. The blue continuous curves in (a) and (b) show the original time series. *o { 2 3 4 5 1151 x,:‘ | noise perturbations, measurement errors, and other im-
The time series predicted by the NG-RC-Ch (a) and NG-RC (b) algorithms are shown by the red dashed curves. The blue and b | | | i “g’% perfections are inevitable. We verified the performance
red curves in (c¢) show the normalized absolute errors for the NG-RC-Ch and NG-RC algorithms, respectively. The time axis is =02y * T #*"4;?;:% 1 of our algorithm using experimental datasets of the elec-
normalized by the largest Lyapunov exponent. The parameters for the Rossler system: At = 0.1, T} = 1000, K = 3, 7 = 1.5 and . . 1 | | 05 | | | %ﬁ*’ tronic Rossler-like oscillator provided by Vera-Avila et al
m = 8 are the same for both algorithms:; 3 is 107" for NG-RC-Ch and 1073 for NG-RC. The parameters for the Lorenz system: 0 L 2 8 4 5 0.5 1 15 2 25 [3]. (a) Dynamics of actual (blue curve) and predicted
At = 0.005, Tiyain = 100, k=3, 7=15 m=9and B =107"°. o (red dashed curve) time series. (b) Dynamics of the pre-
diction error. (c¢) The return maps constructed from the original (blue dots) and predicted (red dots) time series. The red dots are
consistently near the blue dots, indicating that the trained model reproduces the climate in the long term. Note that the red dots fall
on an imaginary thin continuous curve, while the blue dots are scattered (due to noise present in the experimental time series) in the
Rossler e neighborhood of this curve. Thus, it can be concluded that the NG-RC-Ch works as a noise filter.
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Summary
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» NG-RC and NG-RC-Ch with monomials or Chebyshev polynomials of suf-

ficiently high degree can effectively predict the behavior of chaotic systems
when only scalar time series is available for observations.
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» The prediction time of NG-RC-Ch is approximately two Lyapunov time

The medians of valid prediction time as a function of sampling time and degree of nonlin- .

earity. The valid prediction time Ty, is defined as the time interval from the beginning of the prediction to the first point in time units longer than that Of NG_RC )

when the absolute value of the error exceeds some arbitrary threshold value. The prediction time is inhomogeneous on the attractor:

the prediction result depends on the choice of the initial conditions. Here the valid prediction time is averaged over N = 1000 - OU.I' algorithm 1S suit able fOI' Short_term and long_term forecasting includ_
trajectories with different initial conditions on the strange attractor. Error bars show the first and third quartiles. We use the . . 7 .
labels “Mn” (monomials) and “Ch” (Chebyshev polynomials) followed by the number m to denote the results of the NG-RC and 11ng the reconstruction of Lyapunov exponents, return maps and bifurca-

NG-RC-Ch algorithms with a given degree m of nonlinearity, respectively. The parameters for the Rossler system: Ti..in = 2000,

P onl e A i T e tion diagrams. It works well for time series recorded in a real experiment.
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