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The same graph as previous but the coupling strength is larger 

D=0.02.

The front of the pulse cannot 

propagate in the system if its 

diffussion coefficient is smaller 

than some critical value. The 

critical diffussion coefficient can 

be estimated  by usig regular 

perturbation theory:

Here the solid curve and asterisks show respectively the analitical 

and numerical estimations of the critical diffusion coefficient.

Conclusions 

Model

Motivation
Excitable systems have only one stable fixed point, but perturbations 

above a certain threshold induce large excursions in phase space, 

which take the form of spikes of fixed shape. Diffusively coupled 

excitable systems may produce propagation of this excitation, i.e. 

pulses traveling through neurons. Our aim is to study how an 

external high-frequency perturbation effects such systems and try to 

understand the effects of deep-brain stimulation to neurons.

Tools 
1. Two-scale method [1]: The period of the stimulation is much lower 

than the lowest characteristic time-scale of the free system. This 

method allows to separate the slow and fast motions, therefore 

autonomous equations for slow motion can be derived.

2. Asymptotic pulse construction [2]: Derived autonomous equations 

enabled us to use known methods for pulse parameters estimation at 

the limit of slow recovery (         ). In this case pulse can be 

subdiveded in four parts, which can be described by simplified 

averaged equations.
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Results 
The deviations from averaged equations resting point are governed by 

Where                                                                     , 

               - stimulation intensity and             .

Pulse enhancement 

Spatio-temporal evolution of the membrane potential obtained from 

initial equations. The background of homogeneous high-frequency 

oscillations is excluded i.e. the color encodes the value                   . 

The fixed parameters are:    = 10,    = 0.0008 and D=0.015. The 

Gaussian noise was added to the recovery variable.

Pulse suppression 

0 1000 2000 3000 4000

−2

0

2

time

v 70
,v

70

original eq.
averaged eq.

● As in continuous case [3], the high frequency stimulation (HFS) 

suppresses the pulse propagation when stimulation intensity exceeds 

a critical value. 

● HFS may enhance the pulse propagation when without 

stimulation the system demonstrates propagation failure. This effect 

is determined by nonmonotonical dependence of the system's 

excitability parameter on stimulation intensity.

● The effect of suppression of pulse propagation is less sensitive to 

the noise than the effect of enhancement of propagation.

The myelinated axon is modeled by a one-dimensional chain of 

diffusively coupled excitable elements described by the FitzHugh-

Nagumo (FN) equations:

Here the function                            ,     - the membrane potencial,

    - the recovery variable,   ,    - the stimulation amplitude and 

frequency.
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