Enhancement and suppression of pulse propagation in a discrete

Fitzhugh-Nagumo model subjected to a high-frequency stimulation
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Motivation
Excitable systems have only one stable fixed point, but perturbations
above a certain threshold induce large excursions in phase space, PUISG enha‘ncement
which take the form of spikes of fixed shape. Diffusively coupled 2 1000 2
excitable systems may produce propagation of this excitation, i.e. 'g
pulses traveling through neurons. Our aim is to study how an -
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external high-frequency perturbation effects such systems and try to S
understand the effects of deep-brain stimulation to neurons. ; (a) :74 _8
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Model 5 1
The myelinated axon is modeled by a one-dimensional chain of .8
diffusively coupled excitable elements described by the FitzHugh- =7
Nagumo (FN) equations: = A =07 -2
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Un =  f(vn) —wn + D(vpy1 — 20, + vp—1) + acos(wt),
Wy, = (v, + 8 —ywy).
Here the function f (ﬂn) = Up — %Ui , Un - the membrane potencial,

Wy, - the recovery variable, a,w - the stimulation amplitude and
frequency.

Tools

1. Two-scale method [1]: The period of the stimulation is much lower
than the lowest characteristic time-scale of the free system. This
method allows to separate the slow and fast motions, therefore
autonomous equations for slow motion can be derived.

2. Asymptotic pulse construction [2]: Derived autonomous equations
enabled us to use known methods for pulse parameters estimation at
the limit of slow recovery (& — (). In this case pulse can be
subdiveded in four parts, which can be described by simplified
averaged equations.
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Spatio-temporal evolution of the membrane potential obtained from
initial equations. The background of homogeneous high-frequency
oscillations is excluded i.e. the color encodes the value v,, — A sin(wt)
The fixed parameters are: w = 10, £ = 0.0008 and D=0.015. The
Gaussian noise was added to the recovery variable.

Pulse suppression
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The same graph as previous but the coupling strength is larger
D=0.02.

Results

Conclusions

The deviations from averaged equations resting point are governed by
00, = F(6v,) — dwy, + D(0vpt1 — 200, + 0Up—1),
dw, = e(dv, —yowy),

Where F'(0v,,) = —0v, (0v, — V1 (A))(6v, — Va(A))/3,
A = a/w - stimulation intensity and V; > V5 .

The front of the pulse cannot
propagate in the system if its
diffussion coefficient is smaller
than some critical value. The
critical diffussion coefficient can
be estimated by usig regular
perturbation theory:

D. =~ VZ(A)/12
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Here the solid curve and asterisks show respectively the analitical
and numerical estimations of the critical diffusion coefficient.

@ As in continuous case [3], the high frequency stimulation (HFS)
suppresses the pulse propagation when stimulation intensity exceeds
a critical value.

@ HES may enhance the pulse propagation when without
stimulation the system demonstrates propagation failure. This effect
is determined by nonmonotonical dependence of the system’s
excitability parameter on stimulation intensity.

@ The effect of suppression of pulse propagation is less sensitive to
the noise than the effect of enhancement of propagation.
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