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We consider a large network of globally coupled quadratic integrate-and-fire neurons, which are canonical
representatives for class I neurons near the spiking threshold. The model includes two heterogeneous parameters.
One of them characterizes the state of isolated neurons and subdivides them into excitable and spiking units. The
other heterogeneous parameter is the interaction delay time. In the infinite-size limit, we reduce the model to
a simple system of ordinary differential equations. By bifurcation analysis of these equations, we identify the
regions in the parameter space where the network exhibits macroscopic self-oscillations. The robustness of the
oscillations against aging damage, which transforms spiking neurons into nonspiking neurons, is analyzed. We
found an interesting counterintuitive effect when an increase in the proportion of nonspiking neurons induces
macroscopic oscillations. The validity of the reduced equations is confirmed by comparing their solutions with
the solutions of microscopic equations for a finite-size network. The solutions are compared not only for the
periodic oscillation modes but also for the collective chaos regime.
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I. INTRODUCTION

Studies of collective behavior in systems consisting of
many coupled nonlinear dynamic units have been an active
and continuing area of research in diverse fields ranging from
physics to neuroscience [1–5]. An important early contribu-
tion in these studies was the introduction by Kuramoto [6] of
a simple paradigmatic model for synchronization phenomena
in large populations of interacting oscillators. The Kuramoto
model describes a system of heterogeneous phase oscillators
coupled to each other via sine function. The model was ex-
tensively studied during the past two decades [2–5]. A major
breakthrough in these studies belongs to Ott and Antonsen [7].
Considering the thermodynamic limit, they reduced an infinite
set of Kuramoto equations to a low-dimensional macroscopic
model defined by a small system of ordinary differential
equations (ODEs) for macroscopic order parameters. This
approach, known as Ott-Antenson (OA) ansatz, stimulated
the analysis of various modifications of the Kuramoto model
[8–13]. Furthermore, OA ansatz was adopted for globally
coupled networks of theta neurons [14–16], networks of theta
neurons with spatially dependent coupling [17], networks
incorporating gap junctions [18], and a pulse coupled Winfree
model [19,20].

An alternative method to reduce microscopic equations of a
particular class of neural systems has been proposed by Mont-
brió, Pazó, and Roxin [21]. The authors considered an infinite-
size network of heterogeneous quadratic integrate-and-fire
(QIF) neurons globally coupled via instantaneous pulses.
They found that the corresponding continuity equation can
be solved by a Lorentzian ansatz (LA) with two time-varying
order parameters, which appeared to be biophysically relevant
quantities, namely the mean membrane potential and the firing
rate. As a result, the authors derived a simple system of two
ODEs for these quantities. Although the LA and OA ansatz
look quite different, there is a simple conformal mapping

between their order parameters [21]. The LA has been suc-
cessfully applied to various modifications of QIF neuron
networks in subsequent publications [22–25]. In Ref. [22],
the LA was extended to a more realistic synaptic coupling
between QIF neurons by taking into account the finite width
of synaptic pulses. Such a coupling resulted in more complex
dynamics of the network, including the macroscopic self-
oscillations of the mean field, which have not been observed in
Ref. [21]. Another way to gain the macroscopic oscillations in
the QIF neuron network has been demonstrated in Ref. [23].
Here, as well as in Ref. [21], the authors considered an
interaction via instantaneous pulses but introduced a uniform
delay in the coupling.

In this paper, we consider a network of QIF neurons with
two heterogeneous parameters. One of them characterizes the
state of isolated neurons in the network and the other is the
interaction delay time. The introduction of heterogeneous in-
teraction delays is motivated by the fact that in realistic neural
networks axons have different lengths and are characterized
by different transmission speeds, which leads to different sig-
nal transmission times between neurons [26,27]. We note that
a more accurate model should include spatial coordinates and
consider spike propagation between neurons. Here, as well
as in Refs. [23], we consider a simplified model network of
point neurons in which the spatial coordinates are ignored but
the finite time of pulse propagation between neurons is taken
into account using a communication delay. By employing
the LA and the methods introduced in Ref. [28], we reduce
the microscopic model to a finite set (� 3) of ODEs, which
include three macroscopic variables, namely the mean mem-
brane potential, the firing rate, and the mean synaptic current.
Bifurcation analysis of these equations makes it possible to
identify regions in the parameter space where macroscopic
oscillations occur. We are mainly interested in the dependence
of the oscillations on the heterogeneities of the network.
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When studying large complex networks, an important prac-
tical problem is the robustness of network function under
malfunctions of internal components. In this paper, we study
the effect of aging, when local damages transform the spiking
neurons into the nonspiking. When the proportion of inactive
elements in a network exceeds some threshold value, the net-
work ceases to generate macroscopic oscillations and its phys-
iological function may be lost. Such a phenomenon is called
an aging transition. Originally, the effect of aging transition
was detected by Daido and Nakanishi [29] in two populations
of coupled active and inactive Stuart-Landau oscillators. In
Ref. [29], as well as in the subsequent publications [30–32],
the elements in each of the subpopulations were identical.
In more recent papers [22,33,34], the aging transition was
analyzed in the case of one, but heterogeneous population in
which both active and inactive elements are heterogeneous.
In Refs. [35,36], an influence of heterogeneous interaction
delay to aging transition were explored; however, the inves-
tigations were restricted to the case of two subpopulations
with the identical elements in each of them. Here we con-
sider a combined case, where both the network elements
and the interaction delays are heterogeneous. We show that
such a combination can cause a counterintuitive effect when
an increase in the proportion of nonspiking neurons induces
macroscopic oscillations in the network. Such aging-induced
oscillations are opposed to the conventional aging transition.

The paper is organized as follows. In Sec. II, we describe
our model and, in the infinite-size limit, derive the reduced
macroscopic equations. Section III is devoted to the bifurca-
tion analysis of the reduced equations. Then, in Sec. IV, we
analyze the aging transition. In Sec. V, the solutions of the
reduced macroscopic equations are compared with the results
of direct numerical simulations of microscopic equations for a
finite-size network. Finally, in Sec. VI we discuss the results.

II. MODEL DESCRIPTION

We consider a heterogeneous network of N all-to-all cou-
pled quadratic integrate-and-fire neurons, which represent the
canonical model for class I neurons near the spiking threshold.
The microscopic state of the network is defined by the set
of neurons’ membrane potentials {Vi}i=1..N , which satisfy the
following equations:

V̇i = V 2
i + ηi + JSi (t ). (1)

Here ηi is a current that specify the behavior of each isolated
neuron and the term JSi (t ) defines the synaptic coupling
between neurons, where J is the synaptic weight. For the
uncoupled network, J = 0, the neurons with the negative
value of the parameter ηi < 0 are quenched (they are in an
excitable regime), while the neurons with the positive value
of the parameter ηi > 0 generate instantaneous spikes, which
are approximated by the Dirac delta function. The spikes
are emitted at the moments when the membrane potential
Vi reaches a peak value Vpeak. Immediately after the spike
emission the membrane potential is reset to Vreset. Thereafter,
we take Vpeak = −Vreset → ∞. Then the interspike interval of
the ith spiking neuron is ISIi = π/

√
ηi . The heterogeneity of

neurons is realized by spreading the values of the parameter

η according to a distribution function g(η), which will be
specified below.

We consider a network of all-to-all time-delay coupled
neurons. To this end, we incorporate link-dependent interac-
tion time delays τji for coupling between any two j and i

neurons, so the mean synaptic current for the ith neuron is
defined as

Si (t ) = 1

N

N∑
j=1

∑
k\tkj <t

δ
(
t − t kj − τji

)
, (2)

where δ(t ) is the Dirac delta function and tkj is the time of
the kth spike of the j th neuron. We assume that the collection
of all delays τji is characterized by a distribution h(τ ) such
that the fraction of links with delays between τ and τ + dτ

is h(τ )dτ . We also assume that, for randomly chosen links,
τ is uncorrelated with neuron parameters η at either end of
the link. Thus, by spreading the time delay parameter, we
introduce the second heterogeneity in the network, now in the
coupling.

A. Thermodynamic limit N → ∞
In the thermodynamic limit N → ∞, the infinite-

dimensional microscopic model (1) can be reduced to a finite-
dimensional macroscopic model. To derive the macroscopic
equations, we use the Lorentzian ansatz [21], which is closely
related to the Ott-Antonsen ansatz [7,8]. Since the derivation
is similar to that described in Refs. [7,21,28], here we present
it in abbreviated form.

In the infinite-N limit, the macroscopic state of the sys-
tem (1) can be described by a continuous density function
ρ(V |η, t ). The product ρ(V |η, t )dV defines the fraction of
neurons with the membrane potential between V and V +
dV and parameter η at time t . Conservation of number of
neurons implies that the density function ρ(V |η, t ) satisfies
the continuity equation

∂

∂t
ρ = − ∂

∂V
{ρ[V 2 + η + JS(t )]}. (3)

For N → ∞, the mean synaptic current (2) can be approxi-
mated by the integral

S(t ) =
∫ ∞

0
r (t − τ )h(τ )dτ, (4)

where r (t ) is the total firing rate of neurons, i.e., the
population-averaged number of spikes per unit time. The
total firing rate is expressed through the integral r (t ) =∫ +∞
−∞ r (η, t )g(η)dη, where r (η, t ) is the firing rate of neurons

with the fixed value of the parameter η. The latter is defined
as the probability flux at V → +∞, i.e., r (η, t ) = ρ(V →
∞|η, t )V̇ (V → ∞|η, t ).

According to Ref. [21], we look for a solution of Eq. (3) in
the form of Lorentzian distribution

ρ(V |η, t ) = 1

π

x(η, t )

[V − y(η, t )]2 + x(η, t )2
(5)

with time-dependent parameters x(η, t ) and y(η, t ) that de-
fine the half-width and the center of the distribution. These
parameters are related to the total firing rate r (t ) and the mean
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membrane potential v(t ) via integrals

r (t ) = 1

π

∫ +∞

−∞
x(η, t )g(η)dη, (6a)

v(t ) =
∫ +∞

−∞
y(η, t )g(η)dη. (6b)

By substituting the LA Eq. (5) into the continuity equation
(3), one can derive two differential equations for the parame-
ters x(η, t ) and y(η, t ):

ẋ(η, t ) = 2x(η, t )y(η, t ), (7a)

ẏ(η, t ) = η − x2(η, t ) + y2(η, t ) + JS(t ). (7b)

It is assumed that all trajectories (for any initial conditions)
of the system (3) reach the manifold (5) in a relatively short
time, so all relevant dynamics of the system can be described
in a reduced subspace and characterized by the evolution of
the manifold parameters defined by Eqs. (7).

Further simplification can be achieved by a proper choice
of the distribution functions for the heterogeneity parameters
η and τ . Specifically, for the η parameter, we choose the
Lorentzian distribution

g(η) = 1

π

�

(η − η̄)2 + �2
, (8)

where η̄ is the center of the distribution and � is its width.
Such a choice allows us to solve the η integrals in Eqs. (6a)
and (6b). This is performed by analytic continuation of x(η, t )
and y(η, t ) from real to the complex η plane and by the use of
the residue theorem. As a result, the following expressions for
the firing rate and the mean membrane potential are obtained:
r (t ) = x(η̄ − i�, t )/π and v(t ) = y(η̄ − i�, t ). By substi-
tuting these expressions into Eqs. (7), we obtain the following
differential equations for these parameters:

ṙ = �/π + 2rv, (9a)

v̇ = η̄ + v2 − π2r2 + JS(t ). (9b)

Equations (9) together with Eq. (4) constitute the macro-
scopic model of the system. This model is significantly sim-
pler than the microscopic model defined by Eqs. (1) and (2).
However, in general, this model is still infinite dimensional,
since it belongs to a class of differential equations with dis-
tributed delays. Nevertheless, the proper choice of the delay
distribution function h(τ ) allows us to reduce this system to
a finite set of ordinary differential equations. As shown in
Ref. [28], a convenient class of functions for this purpose is
given by the gamma distribution

h(τ ) = An

T n
τn−1 exp

(
− nτ

T

)
(10)

with a parameter n being a natural number, n = 1, 2, . . .. Here
T is the mean value of the distribution and An = nn/(n − 1)!
is a normalization parameter. The standard deviation of τ

about its mean T is given by

δτ = (〈τ 2〉 − 〈τ 〉2)1/2 = T/
√

n. (11)

From here we see that the width of the distribution decreases
with the increase of n and the distribution turns into the Dirac

delta function h(τ ) = δ(τ − T ) when n → ∞. The latter case
corresponds to uniform delay, τ = T , on all of the links. This
case is previously considered in Ref. [23]. Here by varying n,
we can study how the relative spread δτ/T in the delay times
affects the dynamics of the network.

The gamma distribution enables the transformation of the
convolution (4) into the differential equation for S(t ). Taking
the Laplace transform of Eq. (4), we get

Ŝ(s) = ĥ(s)r̂ (s), (12)

where Ŝ(s) and r̂ (s) are the Laplace transform of S(t ) and
r (t ), respectively, and

ĥ(s) =
(

T

n
s + 1

)−n

(13)

is the Laplace transform of the gamma distribution h(τ ). Now
dividing both sides of Eq. (12) by ĥ(s) and transforming back
to the time domain via substitution s → d/dt , we get an nth-
order differential equation for the mean synaptic current S(t ):

[
T

n

d

dt
+ 1

]n

S(t ) = r (t ). (14)

This equation can alternatively be rewritten in the form of a
system of n first-order differential equations,

T

n

dSj

dt
= Sj+1 − Sj , j = 1, . . . , n, (15)

for n variables [S1(t ), . . . , Sn(t )] and Sn+1(t ) = r (t ). The first
variable of this system defines the solution of Eq. (14), S(t ) =
S1(t ). The form (15) is convenient for numerical simulations.
Thus, for the given n, the macroscopic model of heteroge-
neous QIF neurons with the heterogeneous interaction delays
is described by a system of (n + 2) ODEs consisting of
Eqs. (9) and (15).

III. BIFURCATION ANALYSIS

In order to find the regions of the parameters where the
system of coupled QIF neurons exhibits macroscopic oscil-
lations, we look for local bifurcations of Eqs. (9) and (14).
To this end, we analyze the linear stability of the equilibrium
(fixed) points of the system. The system of Eqs. (9) and
(14) is characterized by three dynamical variables: r (t ), v(t ),
and S(t ). We denote the corresponding equilibrium values by
overbars: r̄ , v̄, and S̄. They are found from Eqs. (9) and (14) by
equating the derivatives of the variables to zero. From Eq. (14)
it follows that S̄ = r̄ . Then by substituting this relation into
Eqs. (9) and equating their right-hand sides to zero, we obtain
equations for the equilibrium values of r̄ and v̄:

�/π + 2r̄ v̄ = 0, (16a)

η̄ + v̄2 − π2r̄2 + J r̄ = 0. (16b)

From these equations, we see that the equilibrium values
are independent of the parameters n and T of the delay dis-
tribution function h(τ ). They depend only on the parameters
� and η̄ of the distribution function g(η) as well as the
coupling strength J . However, we emphasize that the stability
of equilibrium points depends on all the above parameters.
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Here we restrict our analysis to the case η̄ > 0, when most
of uncoupled QIF neurons are spiking. Then Eqs. (16) has a
single solution, i.e., the system possesses a single fixed point.
Although the coordinates of this fixed point cannot be written
explicitly, the bifurcation curves in different planes of the
system parameters can be derived in a parametric form.

In order to analyze the linear stability of the fixed point,
we substitute r = r̄ + δr , v = v̄ + δv, and S = S̄ + δS into
Eqs. (9) and (14) and linearize them with respect to small
deviations (δr, δv, δS). Then by looking for the solution of
the linearized equations in the form (δr, δv, δS) ∝ exp(λt ),
we obtain the characteristic equation

[(2v̄ − λ)2 + 4r̄2π2](1 + λT/n)n − 2J r̄ = 0 (17)

that defines the eigenvalues λ of the fixed point. Equation (17)
is an (n + 2)-order polynomial equation with respect to λ and
thus it has (n + 2) roots. The fixed point is stable if the real
parts of all roots are negative and is unstable if the real part of
at least one root is positive.

A. Andronov-Hopf bifurcation

Andronov-Hopf (AH) bifurcation is a local bifurcation
that defines the birth of a limit cycle from an equilibrium,
when the equilibrium changes stability. This happens when
two leading complex conjugate eigenvalues simultaneously
cross the imaginary axis of the complex plane. By leading
eigenvalues we mean the eigenvalues with the maximum real
part. Thus, at the AH bifurcation point there exists a purely
imaginary eigenvalue λ = iω that satisfies Eq. (17):

[(2v̄ − iω)2 + 4r̄2π2](1 + iωT /n)n − 2J r̄ = 0. (18)

Here ω is a real parameter referred to as a Hopf frequency.
All the AH bifurcation points satisfy Eqs. (16) and (18).
However, not all solutions of Eqs. (16) and (18) correspond
to the AH bifurcation points, since these equations are also
satisfied when nonleading eigenvalues cross the imaginary
axis. In order to identify the right AH bifurcation points in
the parameter space, we have to select only those solutions of
Eqs. (16) and (18) for which all other roots of Eq. (17) have
negative real parts, Re(λ) < 0.

Equations (16) and (18) are very convenient to construct
the AH bifurcation curves in some two-dimensional projec-
tions of the parameter space. It appears that the solutions of
these equations can be presented in a parametric form. Below
we demonstrate such a construction of the AH bifurcation
curves in (T , J ) and (�, J ) parameter planes.

1. (T, J ) plane

First, we assume that all parameters of the system are fixed
except for the parameters T and J and derive parametric
equations for the AH bifurcation curves in the (T , J ) plane.
To this end, we introduce a parameter

q = ωT/n (19)

and treat it as an independent variable. We seek to present the
solutions of Eqs. (16) and (18) in the parametric form T =
T (q ) and J = J (q ). Let us denote (1 + iq )n ≡ A(q ) + iB(q )
and insert this definition into Eq. (18). Then by separating the

real and imaginary parts, we get

[4v̄2 − ω2 + 4π2r̄2]A + 4v̄ωB = 2J r̄, (20a)

[4v̄2 − ω2 + 4π2r̄2]B − 4v̄ωA = 0. (20b)

After some manipulations with the Eqs. (16) and (20), we
get a polynomial equation for r̄

C8r̄
8 + C6r̄

6 + C4r̄
4 + C2r̄

2 + C0 = 0, (21)

where Cj are the following coefficients:

C8 = 4B2π4, (22a)

C6 = −8B2η̄π2, (22b)

C4 = 2[4A�2R − 8�2R2 − (�2 − 2η̄2)B2], (22c)

C2 = 2η̄�2[B2 − 4AR]/π2, (22d)

C0 = �4[B2 − 16R2 − 8AR]/4π4. (22e)

Here we introduced a notation R = A2 + B2. Since the
parameters A and B are functions of q, the parameter R as
well as the parameters Cj of the polynomial Eq. (21) are also
functions of q. Thus, by solving this equation, we obtain r̄

as a function of q, r̄ = r̄ (q ). Then from Eq. (16a), we get
v̄(q ) = −�/2πr̄ (q ) and from Eq. (16b) obtain

J (q ) = [π2r̄2(q ) − v̄2(q ) − η̄]/r̄ (q ). (23)

Next, from Eqs. (20), we derive the dependence of the
Hopf frequency ω on q, ω(q ) = r̄ (q )/2v̄(q )R(q ), and from
Eq. (19) finally get

T (q ) = nq/ω(q ). (24)

Examples of using the parametric Eqs. (23) and (24) are
presented in Fig. 1. Here we plot the AH bifurcation curves in
(T , J ) plane for the fixed η̄ = 1 and different fixed values of
the parameters � and n that define the widths of the distribu-
tion functions g(η) and h(τ ), respectively. The colored areas
show the regions of the parameters where the equilibrium is
unstable and thus the oscillations of the firing rate and the
mean membrane potential take place. The left column in the
figure corresponds to the homogeneous neurons (� = 0). The
relative spread of interaction delays increases from bottom to
top (n is decreased from 16 to 4). When the interaction delays
are scattered modestly (n = 16), the macroscopic oscillations
appear in stripelike areas of the (T , J ) plane (see the bottom-
left graph in the figure). The oscillations appear for both
the inhibitory (J < 0) and excitatory (J > 0) couplings. The
stripes are more pronounced for the excitatory coupling. If we
fix the coupling strength J at some positive value and vary
the mean value T of the delay time, we identify alternating
intervals of T with and without macroscopic oscillations. The
inhibitory coupling, J < 0, is more favorable for macroscopic
oscillations, since for J < 0 the colored area is larger than that
for J > 0. From the top left graph, we see that the excitatory
coupling can also be favorable for macroscopic oscillations
provided that the width of the delay distribution function is
sufficiently large (n = 4). Here the colored areas for J > 0
and J < 0 are comparable.

In Fig. 1, the middle and the left columns show an influence
of the heterogeneity of neurons. When the interaction delays
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FIG. 1. Andronov-Hopf bifurcation diagrams of the macroscopic model Eqs. (9) and (14) in the (T , J ) parameter plane. The points are
estimated from the parametric Eqs. (23) and (24). The colored regions show where the equilibrium is unstable. Parameters: η̄ = 1, the columns
correspond to � = 0, 10−4, 2.5 × 10−1 from left to right, and the rows correspond to n = 4, 6, 16 from top to bottom, respectively.

are weakly scattered, the system is very sensitive to a small
heterogeneity of neurons. This is evident from the bottom row
of the figure (n = 16). A little increase of the width � of the
distribution function g(η) from 0 to the value 10−4 drastically
reduces the number and the sizes of the colored areas. In the
right column (� = 0.25), only two colored areas correspond-
ing to the macroscopic oscillations remain. The sizes of these
areas rapidly reduce with the increase of the width of the delay
distribution function (top right graph). Thus the macroscopic
oscillations do not appear in the neural network if both the
parameters η and τ are strongly heterogeneous.

2. (�, J ) plane

In order to construct the AH bifurcation curves in the
(�, J ) plane, we choose ω as an independent variable and
look for the solutions of Eqs. (16) and (18) in the parametric
form � = �(ω) and J = J (ω). Similarly as in Sec. III A 1,
we denote (1 + iωT/n)n+1 ≡ A(ω) + iB(ω). The parameters
A and B satisfy the same Eqs. (20b), but unlike in Sec. III A 1,
now they are functions of the variable ω rather than q. By
performing mathematical operations with Eqs. (16) and (20),
we find that the potential v̄ satisfies the quadratic equation

4Bv̄2 + 2(2R − A)ωv̄ + B(2η̄ − ω2/2) = 0. (25)

By solving this equation, we obtain v̄ as a function of ω, v̄ =
v̄(ω). Then from Eq. (20b), we define r̄ as a function of ω,
r̄ (ω) = [ωv̄(ω)A(ω)/B(ω) + ω2 − v̄2(ω)]1/2/π and, finally,
from Eqs. (16) derive the parametric equations:

�(ω) = −2πr̄ (ω)v̄(ω), (26a)

J (ω) = π2 r̄ (ω) − [η̄ + v̄2(ω)]/r̄ (ω). (26b)

In Fig. 2, we draw the AH bifurcation curves in the (�, J )
plane for the fixed η̄ = 1 and different fixed values of the
parameters T and n that define the mean and the relative width
δτ/T = 1/

√
n of the distribution function h(τ ), respectively.

The relative width of the delay distribution decreases in
columns from left to right. We see that macroscopic oscil-
lations persist for higher diversity (larger �) of neurons the
smaller is the scatter of delays (the larger n). Nevertheless,
for any fixed n there exists a threshold value of � beyond
which the macroscopic oscillations disappear. Again, we see
that the inhibitory coupling is more favorable for macroscopic
oscillations. An exceptional case is the top left graph (n = 4
and T = 1), where the oscillating areas for the inhibitory
(J < 0) and excitatory (J > 0) couplings are comparable.
The increase of the mean delay T (see the rows in the figure
from top to bottom) decreases the lengths and the widths
of oscillating regions for the excitatory coupling. For the
inhibitory coupling, there exists only one oscillating region
and its size is almost independent of the parameters T and n

of the delay distribution function.

IV. AGING TRANSITION

In the studies of complex neural networks, an important
problem is the robustness of network structure and function
under external perturbations. Of particular interest is the ques-
tion of how robust is macroscopic activity of a network against
local damages that convert spiking neurons into nonspiking
neurons. When the proportion p of the inactive neurons is
increased, the amplitude of global oscillations decreases and
vanishes at some critical value pc. This phenomenon is called
the aging transition. The parameter pc varies in the interval
[0,1] and serves as a measure for the robustness against aging.
For a network of QIF neurons, coupled globally via synaptic
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FIG. 2. Andronov-Hopf bifurcation diagrams of the macroscopic model Eqs. (9) and (14) in (�, J ) parameter plane. The points are
estimated from the parametric Eqs. (26). The colored regions show where the equilibrium is unstable. Parameters: η̄ = 1, the columns
correspond to n = 4, 6, 16 from left to right, and the rows correspond to T = 1, 1.5, 2 from top to bottom, respectively.

pulses of finite width, the aging transition was considered in
Ref. [22]. It has been shown that the network is highly robust
against aging damage if the synaptic pulses are sufficiently
wide and high. However, the influence of time delays in the
interactions between neurons has not been considered. Here
we investigate the same problem, assuming that the interaction
between neurons is provided by instantaneous pulses with
distributed delays. We show that the presence of delays in the
interaction considerably complicates the scenario of the aging
transition.

Our analysis of the aging transition is based on the macro-
scopic model defined by Eqs. (9) and (14). We are particularly
interested in how the aging transition depends on the coupling
strength J , the width δτ , and the mean delay T of the delay
distribution function h(τ ). In our model, the parameter η

subdivides the neurons into spiking and nonspiking ones.
The isolated (J = 0) neurons with the parameter η > 0 are
spiking, while the neurons with the parameter η < 0 are
nonspiking. The parameter η is distributed according to the
Lorentz function (8), so the proportion of inactive neurons in
the uncoupled network is

p = 1

2
− 1

π
arctan(η̄/�). (27)

In the following, we assume that the parameter � is fixed.
Then the proportion of inactive neurons is uniquely defined
by the center η̄ of Lorentz distribution (8). The proportion p

monotonically decreases from 1 to 0 when the center η̄ of the
distribution moves from −∞ to +∞ and crosses the value
p = 1/2 at η̄ = 0.

In Fig. 3, we present the bifurcation diagram in the (p, J )
parameter plane. The black dots represent the saddle-node
(SN) bifurcation. As pointed out in Sec. III, the introduced
delays affect only the stability of the equilibrium points, but

do not change their number and positions. This fact allows
us to find the SN bifurcation parametrically, in a similar
way as described in Ref. [21]. The red and blue dots show
the supercritical and subcritical AH bifurcations, respectively.
These points are estimated from the the parametric equations
J = J (ω) and η̄ = η̄(ω), which we derive from Eqs. (16) and
(18). First from Eq. (16a) we find the relation v̄ = −�/2πr̄ .
Inserting this relation into Eq. (20b), we arrive at the fourth

J

0

0.5

1

p

-5 0 5 10 15 20

* *

FIG. 3. Aging transition: the bifurcation diagram in the (J, p)
plane. The black dots represent the saddle-node bifurcation. The red
and blue dots show the supercritical and subcritical AH bifurcations,
respectively. The red solid curve indicates the limit point of cycles
bifurcation. The colored regions correspond to macroscopic oscilla-
tions of the firing rate and the mean membrane potential. The regions
between red points and red solid curves correspond to bistability.
Here the stable equilibrium and the stable limit cycle coexist. The
two black asterisks at p = 0.5 and two green stars at J = 10 denote
the values of the parameters at which the dynamics of the system are
demonstrated in the subsequent figures. Parameters: n = 16, T = 1,
and � = 0.25.
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order polynomial equation for the variable r̄ ,

4Bπ4r̄4 − Bω2π2r̄2 + 2�ωAπr̄ + B�2 = 0. (28)

In this equation, the coefficients A and B are functions of
ω, similarly as in Sec. III A 2. By solving this equation, we
get r̄ as a function of ω. Finally, from Eqs. (20a) and (16b),
we obtain the desired parametric equations by expressing J

and η̄ as functions of ω. The red solid curve indicates the
limit point of cycles bifurcation, where two limit cycles, one
stable and other unstable, collide and disappear. This curve is
obtained by numerical continuation [37]. The colored regions
correspond to the presence of macroscopic oscillations and
the borders of these regions define the dependence of the
robustness parameter pc on the coupling strength J . In the
regions between red points and red solid curves the system is
bistable. Here, depending on the initial conditions, the system
approaches either the stable equilibrium or the stable limit
cycle.

There are four important things to notice in Fig. 3. First,
the inhibitory coupling is sensitive (not robust) to the aging
damage. The oscillations in the region J < 0 exist only when
a small proportion of neurons in the network are inactive. This
is despite the fact that the inhibitory coupling is robust to the
variation of the heterogeneity parameters n, T , and � (see
Figs. 1 and 2).

Second, for the excitatory coupling, the aging transition has
a resonance-like structure in the dependence of the coupling
strength J > 0. The oscillating and nonoscillating regions
alternate when the coupling strength is increased.

Third, in the oscillating regions, the network is robust to the
aging damage. In these regions, the oscillations exist almost
for any values of p. The network is able to preserve the mean
field oscillations even when the proportion of inactive neurons
is close to one. This is despite the fact that the excitatory
coupling is sensitive to the variation of the heterogeneity
parameters n, T , and � (see Figs. 1 and 2).

Fourth, for some values of the coupling strength, the pres-
ence of nonspiking neurons is necessary to gain macroscopic
oscillations. For example, for fixed J = 10, the oscillations
appear when the proportion p of inactive neurons exceeds
some critical nonzero value pc = 0.043. For p < pc, there are
no oscillations. The dynamics of the spiking rate derived from
the macroscopic model for p = 0.04 < pc and p = 0.075 >

pc are shown in Figs. 4(a) and 4(b), respectively. This is
the most striking feature of the aging transition caused by
the delays in the interaction. In contrast to the conventional
aging transition, here an increase in the proportion of inactive
neurons leads to the macroscopic oscillations of the network.
Such aging-induced oscillations have not been observed in
Ref. [22], where the similar network was analyzed without
taking into account interaction delays.

The dependence of the AH bifurcation diagram in the
(J, p) plane on the width of the delay distribution function
(10) is shown in Fig. 5. We see that the effect of aging-induced
oscillations is more pronounced with a large spread of delays.
For n = 5 (top graph), there is the only oscillation region,
which is raised above the J axis. When n is increased (middle
graph), an additional oscillating region appears, which is very
close to the J axis. Finally, for the uniform delay n = ∞

0 10 20 30 40 50
0

1

2

0 10 20 30 40 50
0

10

20

(a)

(b)

FIG. 4. Demonstration of aging-induced oscillations. The dy-
namics of the spiking rate derived from the macroscopic model
Eqs. (9) and (15) at n = 16, T = 1, � = 0.25, and J = 10. (a)
The macroscopic oscillations do not appear if the proportion of
inactive neurons is too small, p = 0.04 < pc = 0.043. (b) Whenever
the proportion of inactive neurons exceeds the critical value p =
0.075 > pc, the network starts to generate macroscopic oscillations.
The values of the parameters used here are marked by green stars in
Fig. 3.

(bottom graph), the oscillation region touches the J axis, and,
therefore, the effect of aging-induced oscillations disappears.

In order to explore the resonance-like structure of the
aging transition shown in Fig. 3 in more detail, we fix the
proportion of nonactive neurons at p = 0.5 and analyze how
the number and the widths of the oscillating regions depend
on the parameters of the delay distribution function h(τ ). The
results are presented in Fig. 6, where the AH bifurcation dia-
grams are shown in the plane of the parameters (J, δτ/T ) for
different values of the mean delay time T . The relative spread

0

0.05

0.1

p

0

0.05

0.1

p

0 2 4 6 8 10
J

0

0.05

0.1

p

(a)

(b)

(c)

FIG. 5. The dependence of the AH bifurcation diagram in the
(J, p) plane on the width of the delay distribution function (10): (a)
n = 5, (b) n = 20, and (c) n = ∞. The parameters T = 1 and � =
0.25 are the same as in Fig. 3. Colored areas correspond to unstable
equilibrium where macroscopic oscillations occur.
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0

0

J

5
0

0.5

10 15

0.5

0.5

FIG. 6. The AH bifurcation diagrams in the plane (J, δτ/T )
for the fixed proportion p = 0.5 (η̄ = 0) of inactive neurons and
different values of the mean delay time, from top to bottom: T = 2,
T = 1.5, and T = 1.

δτ/T = 1/
√

n of the delay distribution function were
changed by varying the parameter n. By intersecting these
diagrams with the horizontal line δτ/T = const, we can
identify the number and the widths of the oscillating intervals
in the coupling strength J for any given δτ/T . We see that
oscillations do not appear if the relative spread δτ/T in the
delay times is large. By gradually decreasing δτ/T , first
one oscillating region in the coupling strength J appears
and broadens. Then further decrease of δτ/T leads to the
appearance of the second, third, and so on, regions. The
larger the mean delay time T , the more regions appear.
All these regions broaden with the decrease of δτ/T and
at some critical value all the regions merge together. For
small-enough δτ/T , the oscillations exist at any J > Jc,
where Jc is a threshold value. The threshold Jc depends on
the mean delay time T . The larger T , the smaller is the
threshold Jc.

V. NUMERICAL SIMULATIONS

The reduced macroscopic Eqs. (9) and (15) are derived in
the limit of an infinite-size network, while realistic networks
consist of a finite number of neurons. In order to verify
how well the macroscopic model predicts the behavior of a
finite-size network, in Figs. 7 and 8 we compare the solutions
of the macroscopic Eqs. (9) and (15) with the solutions of
the microscopic model Eqs. (1) and (2). In both figures,
the networks are composed of N = 5000 QIF neurons with
the same values of the parameters η̄ = 0, � = 0.25, T = 1,
n = 16 and different values of the coupling strength J , which
is equal to 4.5 and 5 in Figs. 7 and 8, respectively. The
top graphs shows the spiking rate dynamics. The red dashed
curves represent the solutions of the macroscopic Eqs. (9)
and (14), while the blue solid curves show the microscopic
dynamics of Eqs. (1) and (2). The bottom graphs represent

0

0.5

1

0 5 10 15 20
0

2000

4000

(a)

(b)

FIG. 7. (a) Comparison of the dynamics of the spiking rate esti-
mated from the microscopic model Eqs. (1) and (2) (blue solid curve)
and the reduced macroscopic model Eqs. (9) and (15) (red dashed
curve). The results of the microscopic model are smoothed by using
a moving average with a time window of the size 10−2. (b) Spike
raster plot. Dots correspond to firing events of individual neurons
derived from the microscopic model. The network consist of N =
5000 quadratic integrate and fire neurons with the parameters η̄ = 0,
� = 0.25, T = 1, n = 16, and J = 4.5. The values of the parameters
used here are marked by left black asterisk in Fig. 3. The Lorentzian
distribution Eq. (8) were deterministically generated using ηj =
η̄ + � tan [(π/2)(2j − N − 1)/(N + 1)], j = 1, . . . , N . For details
of numerical simulation of the microscopic model see Ref. [22].

the spike raster plots, where dots indicate the firing events of
individual neurons obtained from the microscopic model.

Figure 7 corresponds to the stable equilibrium. According
to the macroscopic model, the spiking rate is constant; it
is shown by the horizontal red dashed line. The spiking
rate obtained from the microscopic model (blue solid curve)
fluctuates around this predicted value. The fluctuations occur

0

5

0 5 10 15 20
0

2000

4000

(a)

(b)

FIG. 8. The same as in Fig. 7, but for the coupling strength J =
5. The values of the parameters used here are marked by right black
asterisks in Fig. 3.
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FIG. 9. Comparison of the color plot of the variance of the mean
membrane potential, estimated by a microscopic model, with the
AH bifurcation diagram in the (J, p) plane presented in Fig. 5(b).
When estimating the mean membrane potential, the contribution
from neurons with extremely large values of the membrane potential,
Vj > 500, was ignored. This allowed us to avoid the divergence
of this parameter. The red solid lines show the AH bifurcation
curves. The number of neurons in the network is N = 2000. Other
parameters are the same as in Fig. 5(b).

due to the finite size of the network. The neurons in this
case produce uncorrelated spikes as is evident from the spike
raster plot. Figure 8 demonstrates the regime of periodic
macroscopic oscillations. Now the raster plot shows highly
correlated spikes of the neurons. The spiking rate dynamics
estimated from the microscopic model is in excellent agree-
ment with that obtained from the macroscopic model. This
confirms the validity of the derived macroscopic Eqs. (9)
and (15).

The ability of a macroscopic model to predict the behavior
of a finite size network is further demonstrated in Fig. 9.
Here we present a color plot of a synchronization measure in

0

5

0 50 100 150 200
0

2000

4000

(a)

(b)

FIG. 10. Example of the collective chaos obtained by simulation
of microscopic Eqs. (1) and (2): (a) spiking rate and (b) spike raster
plot. Parameters: N = 5000, J = −5.5, η̄ = 1, � = 0.025, T = 3.5,
and n = 101 (δτ/T ≈ 0.1).
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FIG. 11. One-parameter bifurcation diagram derived from the
macroscopic model Eqs. (9) and (15). The peak values of the spiking
rate are shown as functions of a smoothly varying coupling strength
J . Parameters: η̄ = 1, � = 0.025, T = 3.5, and n = 101 (δτ/T ≈
0.1).

the (J, p) plane and compare it with the bifurcation diagram
presented in Fig. 5(b). As a measure of synchronization, we
choose the variance of the mean membrane potential. Small
values of this parameter correspond to a stable equilibrium
of the network, while large values indicate macroscopic os-
cillations. We see that the AH bifurcation curves, obtained
from the macroscopic model, correctly predict the oscillation
regions in the (J, p) plane.

In a recent publication, Pazó and Montbrió [23] have
shown that collective chaos can emerge in a population of
identical inhibitory neurons with the uniform delayed cou-
pling. Their consideration corresponds to the special case of
our model, when � = 0 and n → ∞. The authors of Ref. [23]
also analyzed the robustness of the chaotic state with respect
to weak heterogeneities of neurons. They ascertained that
collective chaos persists for small nonzero �, however, they
did not consider the influence of the spread in the delay
times. In Fig. 10, we show that collective chaos is present
in the microscopic model Eqs. (1) and (2) when both het-
erogeneities, in the neurons and in the interaction delays, are
taken into account. Scenarios of transition to chaos can be
identified by analysis of the macroscopic model Eqs. (9) and
(15). In Fig. 11, we plot the peak values rpeak of the spiking
rate as functions of a smoothly varying coupling strength J .
We see that with the decrease of J , chaos appears through a
period doubling bifurcation, which starts at J ≈ −2.6. When
increasing J , chaos appears through quasiperiodic oscilla-
tions, which start at J ≈ −7.12. The numerical analysis of
the macroscopic model shows that chaotic regimes are very
sensitive to small variations of the parameters � and n that
define the widths of g(η) and h(τ ) distribution functions,
respectively.

VI. DISCUSSION

In this paper, we analyzed the dynamics of heterogeneous
network of quadratic integrate-and-fire neurons with global
distributed-delay coupling. The network is composed of a
mixture of excitable and spontaneously spiking neurons that
emit instantaneous pulses. The heterogeneity of neurons is
provided by spreading the neuron’s current parameter η via
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the Lorentz density function, while the heterogeneity in the
interaction delay time τ is defined by the gamma distribution.
By using a recently developed reduction technique based on
the Lorentzian ansatz [21], we derived a closed system of or-
dinary differential equations for three macroscopic variables,
namely, the mean membrane potential, the spiking rate and the
mean synaptic current. The derived macroscopic equations are
exact in the limit of an infinite-size network.

In order to identify the regions of the system parameters,
where the network exhibits macroscopic self-oscillations, we
performed the bifurcation analysis of the system. We showed
that the interaction delays do not affect the number and the
position of the equilibrium points but influence only their
stability. We derived parametric equations for the Andronov-
Hopf bifurcation curves that allowed us to identify the regions
of the macroscopic oscillations in different two-dimensional
projections of the parameter space. The main result of this
analysis is that the macroscopic oscillations can only exist
when the spreads of both heterogeneity parameters η and τ

are sufficiently small.
We also analyzed an influence of interaction delays on the

aging transition. The aging transition characterizes the robust-
ness of the macroscopic self-oscillations against damage that
increases the proportion p of inactive neurons in the network.
When this proportion is increased to some critical value pc,
the network loses its oscillatory dynamics. The analysis of
the aging transition in a similar network of QIF neurons, but
interacting without delay, has been performed in Ref. [22].
Here we show that the interaction delays considerably com-
plicate the phenomenon of the aging transition. Because of
the delays, the aging transition has a resonance-like structure
in the dependence of the coupling strength. More importantly,
we revealed a striking feature that contradicts with the con-
ventional definition of the aging transition. In some parameter
regions, we found out that the presence of nonspiking neurons
is necessary to gain macroscopic oscillations, i.e., the oscilla-
tions appear only when the proportion p of inactive neurons
exceeds some critical nonzero value pc, while for p < pc

there are no oscillations. Such aging-induced oscillations are
counterintuitive and, to our best knowledge, they have not
been observed in previous studies of the aging transition.
Here we found this effect for the QIF neuron network. An
interesting question for further research is whether the effect
will remain when replacing QIF neurons with another type of
neurons.

Although the macroscopic equations are derived in the
thermodynamic limit of an infinite number of neurons, they
are well suited to predict the behavior of realistic, finite-size
networks. We compared the solutions of the macroscopic
equations with the numerical simulations of the microscopic
model. For a network consisting of 5000 QIF neurons, we got
an excellent agreement between the above two solutions. In
addition, by numerical analysis of the macroscopic equations
in different parameter regions, we found the collective chaos
regime and confirmed its existence by direct numerical simu-
lation of the microscopic model.

Macroscopic models of the type considered here are uni-
versal in the sense that they describe a network of canon-
ical class I neurons, which are modeled by the equation
of the normal form, universal near the spiking threshold.
Such models can be considered as an alternative [38] to
the phenomenological neural mass models [39], which are
useful for understanding brain rhythms. The advantage of
the macroscopic model considered here is that it describes
exactly an underlying microscopic dynamics of the system.
In this context, further development of this model is desir-
able. A practically important problem is the derivation of the
macroscopic equations for more complex networks, where the
coupling is not global but is rather determined by a specific
network topology.
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